

STEWART MILNE HOMES NEW BRIGHTON ROAD, MOLD

Geo-Environmental Assessment Report

DI/C3915/7867 Rev B

November 2018

William Smith House 173-183 Witton Street Northwich, Cheshire CW9 5LP rel: +44 (0) 1606 334 844

brownfield-solutions.com

	EXECUTIVE SUMMARY
Location	The site covers an area of approximately 3.36 hectares and is situated approximately 1.7 miles northeast of Mold town centre at National Grid Reference 325214, 365549. The site is irregular in shape and is currently used as agricultural land. A row of mature trees is present in the west of the site. Approximately in the middle of the site there is a gentle slope to the east. At the base of the slope the ground becomes boggy. Residential properties are present to the west and south of the site. A couple of commercial properties are present along the southern boundary of the site including a stone mason and car sales. Farmland is present to the north of the site.
Ground Conditions	Made ground was only encountered locally down to between 0.30m and 2.00m. Topsoil was present across site down to between 0.10m and 0.50m bgl. Firm to stiff fractured slightly gravelly sandy clay was present across site, clay was generally present down to bedrock between 12.00m and 18.00m bgl. The clay was locally soft. Sand and gravel was present overlying the bedrock from between 13.50m and 15.40m bgl. Bedrock generally comprised interbedded of grey sandstone and mudstone, with sandstone being more prevalent towards the top of bedrock. A number of coal seams of varying quality were encountered across site up to 1.20m thick at a minimum depth of 13.20m bgl. No evidence of broken ground was encountered.
Soil Contamination	No elevated contaminants are present within the shallow soils on-site. Evidence for the on-site historic landfill identified within the desk study was not encountered.
Ground Gases	Analysis of the TOC of the soils classifies the site as CS1/Green, however the site is in an area requiring full radon protection measures.
Foundations and Floor Slabs	The most suitable foundations for houses are considered strip foundations, taken through any made ground, founding a minimum depth of 0.75m bgl within the brown orange slightly gravelly silty sandy clay, where a safe bearing pressure of 110 kN/m2 should be assumed. Floor slabs will need to be suspended to accommodate full radon precautions.
Highways	CBR values of 2% - 5% are likely to be achieved in undisturbed natural soils and proven by in-situ testing.
Soakaways	Soakaways will not be feasible for the site given the low permeability results obtained.
Mining Risk	Due to the quality of coal encountered, the thickness of superficial deposits, and lack of broken ground or loss of flush, the risk from mining subsidence is considered low.
Further Work	 Tree survey by qualified arboriculturist. Production of Verification Plan for Radon Protection Measures (Remedial Strategy). Detailed foundation design.

PROJECT QUALITY CONTROL DATA SHEET

Site Name:	New Brighton Road, Mold			
Report Name:	Geo-Environi	Geo-Environmental Assessment Report		
Report Number:	DI/C3915/7867 Rev B			
Date:	1 st November 2018			
Status:	Final			
	Original	27/09/18		
Revision:	A 26/10/18 Inclusion of final groundwater monit results.		Inclusion of final groundwater monitoring results.	
	В	01/11/18	Incorporated comments from client.	

Client: Stewart Milne Homes	Engineer:
Harrier House 2 Lumsdale Road Cobra Business Park Trafford Park Manchester M32 OUT	
Contact: Mr Bryan Fryett	Contact:

Written by:

D Ingman MESci FGS Project Engineer

Checked by:

J Campion BSc(Hons) FGS Project Engineer

Approved by:

A Stokoe BSc(Hons) MSc CSci MIEnvSc FGS Senior Project Engineer

CONTENTS

1.0	INTRODUCTION	1
1.1	OBJECTIVES	1
1.2	PROPOSED DEVELOPMENT	1
1.3	Limitations	1
2.0	THE SITE	2
	-	
2.1	LOCATION & ACCESS	
2.2	SITE DESCRIPTION	2
3.0	METHOD OF INVESTIGATION	3
3.1	OBJECTIVES	3
3.2	SITE WORKS	3
3.3	Sampling	3
3.4	LABORATORY TESTING	4
3.5	Monitoring	4
4.0	GROUND CONDITIONS	6
4 1	Muss Casuma	C
4.1 4.2	Made Ground Natural Ground	
4.2 4.3	NATURAL GROUND	-
	GROUNDWATER	
4.4 4.5	OBSERVATIONS	
4.5	OBSERVATIONS	δ
5.0	TEST RESULTS	
5.1	CHEMICAL TEST RESULTS	10
5.2	GEOTECHNICAL TESTING	10
5.3	Aggressive Ground Conditions	10
5.4	WASTE ACCEPTANCE CRITERIA (WAC) RESULTS	10
5.5	SOIL PERCOLATION TEST RESULTS	11
6.0	GEOTECHNICAL ASSESSMENT	12
6.1	GENERAL	
6.2	Soil Parameters	
6.3	Foundations	
6.4	Building Near Trees	
6.5	FLOOR SLABS	
6.6	CONSTRUCTION	
6.7	HIGHWAYS	
6.8	Soakaways	
6.9	COAL MINING SUBSIDENCE	
7.0	ENVIRONMENTAL ASSESSMENT	
7.1	CONTAMINATION	17
7.2	QUALITATIVE RISK ASSESSMENT	
7.3	REMEDIAL MEASURES	
7.3	HEALTH AND SAFETY ISSUES.	
7.4	WASTE	
7.6	COMPLIANCE	-
8.0	CONCLUSIONS	
8.1	SUMMARY	
Geo-Envir	ronmental Assessment Report iv	Stewart Milne Homes

9.0

0.2	FURTHER WORK2	Z
0	REFERENCES	23

DRAWINGS		
Drawing Number	Rev	Title
C3915/01	-	Site Location Plan
C3915/04	-	Exploratory Hole Location Plan

APPENDICES	
APPENDIX A	Exploratory Hole Logs
APPENDIX B	Chemical Testing Results
APPENDIX C	Geotechnical Testing Results
APPENDIX D	Groundwater Monitoring Results
APPENDIX E	Contaminated Land Screening Values
APPENDIX F	Percolation Test Results
APPENDIX G	Contaminated Land Legislative Background
APPENDIX H	CIRIA Risk Assessment Methodology
APPENDIX I	Waste Disposal Guidance
APPENDIX J	CL:AIRE CoP Guidance
APPENDIX K	Limitations

GEO-ENVIRONMENTAL ASSESSMENT REPORT FOR A SITE OFF NEW BRIGHTON ROAD, MOLD

1.0 INTRODUCTION

1.1 Objectives

- 1.1.1 This report describes a Geo-environmental Assessment carried out by Brownfield Solutions Limited (BSL) for Stewart Milne Homes on a site off New Brighton Road, Mold.
- 1.1.2 The objectives of the assessment were to determine the sites environmental setting and likely site conditions, highlighting potential areas of concern that may govern the sites redevelopment.
- 1.1.3 An initial intrusive investigation was undertaken to confirm the findings of the preliminary CSM outlined in the Desk Study Assessment Report Ref: DI/C3915/7613 Issued May 2018, which should be read in conjunction with this report. The initial investigation was undertaken using trial pitting, window sampling and rotary openhole boreholes.
- 1.1.4 The report has been completed in general accordance with CLR11 "Model Procedures for the Management of Land Contamination", BS 5930:2015 and BS 10175:2011+A2:2017.

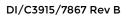
1.2 Proposed Development

1.2.1 The proposed development is residential end use comprising circa 84 houses and associated gardens, soft landscaping areas, public open space, roads and infrastructure.

1.3 Limitations

- 1.3.1 This assessment has been carried out based on information obtained from a number of areas, BSL have assumed that this information is correct.
- 1.3.2 There may be other conditions prevailing on the site which are outside the scope of work and have not been highlighted by this assessment and therefore not been taken into account by this report. Responsibility cannot be accepted for such site conditions not revealed by the assessment.
- 1.3.3 This report has been prepared for the sole use of the client. No other third parties may rely upon or reproduce the contents of this report without the written permission of Brownfield Solutions Ltd (BSL). If any unauthorised third party comes into possession of this report they rely on it at their own risk and BSL do not owe them any Duty of Care.

1


2.0 THE SITE

2.1 Location & Access

- 2.1.1 The site covers an area of approximately 3.36 hectares and is situated approximately 1.7 miles northeast of Mold town centre.
- 2.1.2 The site is centred on National Grid Reference 325214, 365549 as shown on the Site Location Plan C3915/01.
- 2.1.3 Access to the site is gained off New Brighton Road to the northeast of the site.

2.2 Site Description

- 2.2.1 The site has remained unchanged since the walkover undertaken during the Desk Study.
- 2.2.2 The site is irregular in shape and is currently used as agricultural land. A row of mature trees is present in the west of the site. Approximately in the middle of the site there is a gentle slope to the east. At the base of the slope the ground becomes boggy.
- 2.2.3 A row of mature trees is present in the west of the site, with a dense vegetation and a ditch sloping towards the northern boundary of the site in the northern half of the row of trees.
- 2.2.4 In the northwestern corner of the site telegraph poles and overhead cables are present. A footpath also crosses the site in this area.
- 2.2.5 Residential properties are present to the west and south of the site. A couple of commercial properties are present along the southern boundary of the site including a stone mason and car sales. Farmland is present to the north of the site.

3.0 METHOD OF INVESTIGATION

3.1 Objectives

- 3.1.1 The aim of the fieldwork was to:
 - Investigate ground conditions on the site.
 - Assess the potential contamination on the site and obtain samples for contamination screening.
 - Assess the potential impact of any contamination on controlled waters.
 - Assess the need for detailed investigation.
 - Obtain geotechnical information on the ground conditions at the site for preliminary foundation design and preliminary pavement design purposes.
 - Install standpipes to allow future monitoring.
 - Give an assessment of the geo-environmental risks associated with redevelopment of the site.
 - Assess the risk of instability caused by historical mine workings.

3.2 Site Works

- 3.2.1 Eleven trial pits (TP101 to TP111) were excavated to depths of between 2.80m and 3.50m bgl using a JCB 3CX on 20th August 2018.
- 3.2.2 Eight soakaways (SA01 to SA08) were undertaken at depths of between 2.00m and 2.30m on 21st and 22nd August 2018.
- 3.2.3 Twelve window sample boreholes (WS101 to WS112) were drilled to depths of between 2.90m and 5.00m bgl using a tracked window sampling rig and liners (windowless) on 23rd and 24th August 2018.
- 3.2.4 Twelve rotary open hole boreholes (RO101 to RO112) were drilled to depths of between 30.00m and 40.00m bgl using a rotary percussive drilling rig and water flush methods between 20th and 22nd August 2018.
- 3.2.5 The approximate locations of the exploratory holes are indicated on the Site Location Plan Drawing Ref: C3915/04. The exploratory hole logs are presented in Appendix A.
- 3.2.6 The exploratory holes were positioned to establish general ground conditions on the site and investigate areas of specific interest such as the historic landfill and boggy ground. The exploratory holes were logged by an experienced geo-environmental engineer in general accordance with BS 5930 'Code of Practice for Site Investigations' 2015, BS EN 14688-1:2002 'Geotechnical Investigation and Testing Identification and classification of soil' and BS EN ISO 14689:2002 and 'Geotechnical investigation and testing Identification and classification of rock'.

3.3 Sampling

3.3.1 During the drilling of the exploratory holes, representative samples were taken at regular intervals to assist in the identification of the soils and to allow subsequent laboratory testing.

3.3.2 A summary of the samples taken is presented in the table below:

Туре	Number
Environmental	38
Disturbed	108

- 3.3.3 The type of sample taken is dependent upon the stratum and the purpose of analysis in accordance with current environmental and geotechnical guidance.
- 3.3.4 Disturbed samples of soil for chemical testing were placed in plastic tubs and amber jars as required by the UKAS accredited laboratory, and transported under secure refrigerated conditions.
- 3.3.5 The distribution of samples taken across the site is recorded on the exploratory logs in Appendix A.

3.4 Laboratory Testing

3.4.1 As part of the initial assessment for potential contamination of the site, selected samples were taken for the purpose of chemical contamination testing.

3.4.2 The following were analysed at an UKAS approved laboratory:

Determinand	Matrix	Number
BSL Default Suite: Arsenic, cadmium, chromium (total and hexavalent), copper, lead, mercury, nickel, selenium, zinc, speciated polycyclic Hydrocarbons (PAHs), total phenol, free cyanide, water soluble sulphate, soil organic matter and pH.	Soil	13
Waste Acceptance Criteria (WAC)	Soil and Eluate	1
Total Organic Carbon (TOC)	Soil	12
Asbestos Screen and ID	Soil	2

- 3.4.3 The Chemical Laboratory Testing Results are presented in Appendix B.
- 3.4.4 Representative disturbed samples were obtained for all soil types encountered. Selected samples were scheduled for testing at an approved laboratory in accordance with BS 1377 'Method of Test for Soils for Civil Engineering Purposes' 2016. The following tests were scheduled:

BS Test Number	Description	No of Samples
Part 2:	Natural Moisture Content	10
Part 2:	Plasticity Index Analysis	10
Part 3:	pH Value	10
Part 3:	Water Soluble Sulphate Content	10

3.4.5 The Geotechnical Laboratory Testing Results are presented in Appendix C.

3.5 Monitoring

3.5.1 Groundwater monitoring standpipes were installed in the boreholes and subsequently three monitoring visits have been undertaken.

3.5.2 The standpipes consisted of 35mm internal diameter high-density polyethylene (HDPE) pipe. A bentonite seal was made around the plain pipe and a clean gravel pack was placed around the slotted pipe. A summary of the installation construction is presented in the table below:

Location	Depth to Base of Borehole (m bgl)	Response Zone (m bgl)	Targeted Strata
WS101	5.45	1.00 - 5.00	Clay
WS103	5.45	1.00 - 5.00	Clay
WS106	5.45	1.50 - 5.45	Clay
WS108	5.45	1.00 - 5.00	Made ground, clay, sand
WS110	5.45	1.00 - 5.00	Clay

3.5.3 The groundwater monitoring results are presented in Appendix D.

4.0 GROUND CONDITIONS

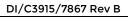
4.1 Made Ground

- 4.1.1 Made ground was only encountered in seven of the exploratory locations (SA03, SA05, TP103, TP104, TP108, WS108, WS109) to depths of between 0.30m and 2.00m bgl.
- 4.1.2 The made ground most commonly comprised a brown grey slightly gravelly silty sand topsoil that was locally clayey down to between 0.30m and 0.40m bgl. This locally contained gravel of glass and pottery. In TP103 a layer of sandstone flag stones was encountered between 0.30m and 0.70m bgl.
- 4.1.3 Deeper made ground was encountered locally within WS108 and WS109. The made ground in WS108 comprised topsoil over a brown slightly gravelly sandy clay containing gravel of glass, pottery, siltstone and sandstone. This was present down to 1.10m bgl. Underlying this was a slightly gravelly silty clay containing gravel of pottery down to 2.00m bgl.
- 4.1.4 Within WS109 topsoil was encountered over a reworked slightly gravelly sandy clay to 0.60m bgl. Underlying this was a gravel of limestone to 1.00m bgl containing pieces of plastic.

4.2 Natural Ground

- 4.2.1 The natural strata at the surface comprised brown grey slightly gravelly silty sand topsoil that was locally clayey. This was encountered to depths of between 0.10m and 0.50m bgl.
- 4.2.2 Generally underlying the topsoil was a firm to stiff brown orange slightly gravelly sandy clay that contained gravel of siltstone, quartz and sandstone. This stratum was very friable and locally behaved more like granular strata. This stratum was encountered to between 0.60m and 3.10m bgl.
- 4.2.3 Within the topographically lower area of the site the brown orange clay was overlain by a firm to stiff silty sandy clay that was locally friable and occasionally contained fibrous plant material. This stratum was encountered down to 0.40m and 1.10m bgl.
- 4.2.4 Underlying the brown orange clay was a firm to stiff friable brown mottled grey slightly gravelly sandy clay that was locally laminated. The gravel comprised siltstone, sandstone, limestone and coal. This stratum occasionally also contained a low cobble content of siltstone and limestone, and locally boulders of siltstone, limestone and sandstone up to 600mm diameter.
- 4.2.5 Within a number of holes the brown orange clay contained lenses of very clayey fine to medium sand/slightly gravelly sand. A summary is presented in the table overleaf:

Location	Top Depth (m bgl)	Bottom Depth (m bgl)	Description
WS101	2.80	3.00	Slightly gravelly clayey fine to medium sand
N/5102	4.00	4.90	Very clayey fine to medium sand
WS102	5.20	5.45	Very clayey fine to medium sand
WS108	4.00	5.00	Silty clayey sand
WS109	5.00	5.45	Fine to medium sand
WS111	4.40	4.80	Slightly clayey fine to medium sand
WS112	3.70	4.90	Slightly gravelly sand


- 4.2.6 A soft to firm locally laminated purplish brown silty sandy clay was encountered beneath the brown orange clay. This stratum was most commonly encountered in the west of the site; however this is likely due to topographical differences and this stratum is anticipated to be present beneath the whole site. The purplish brown clay was encountered from between 1.50m and 4.10m down to the base of the exploratory holes down to 5.45m bgl.
- 4.2.7 The clays noted above were locally soft, a summary of these locations is presented in the table below:

Location	Top Depth (m bgl)	Bottom Depth (m bgl)	Description
WS107	1.40	2.00	Soft brown silty sandy clay
VV3107	2.00	4.20	Soft to firm silty sandy clay
WS108	2.00 4.00		Soft to firm purplish brown silty sandy clay
WS109	1.00	2.00	Soft to firm brown orange silty sandy clay
VVS109	2.00	5.00	Soft brown silty sandy clay
WS110	1.10	5.00	Soft to firm brown orange sandy silty clay
WS112	1.00	3.70	Soft to firm brown silty sandy clay
TP108	2.10	3.30	Soft brown sandy clay
SA01	1.60	2.30	Soft to firm purplish brown sandy clay
SA02	0.25	0.60	Soft to firm grey silty sandy clay
SAUZ	1.80	2.10	Soft purplish brown silty sandy clay
SA04	1.80	2.00	Soft laminated purplish brown silty clay

4.2.8 Clay was generally encountered down to bedrock within the rotary boreholes. Within RO101 to RO106 a gravel/ sand and gravel lens was encountered at the base of the clay from between 13.50m and 15.40m bgl down to between 14.70m and 18.00m bgl.

4.3 Bedrock

- 4.3.1 Bedrock was encountered within the rotary boreholes (RO101 to RO112) at a depth of between 12.00m and 18.00m bgl.
- 4.3.2 Bedrock generally comprised interbedded grey sandstone and mudstone, with sandstone being more prevalent towards the top of bedrock.
- 4.3.3 A number of coal seams were encountered across the site. Full flush returns were maintained in each of the boreholes and no voids or broken ground were encountered. The coal was predominantly recorded to be shaley, which is potentially indicative of low quality. A summary of the coal seams encountered is presented in the table below:

Location	Top Depth	Bottom Depth	Description	
	(m bgl)	(m bgl)		
RO101	15.40	16.40	Dark shale/coal	
KOIUI	35.90	36.50	Dark shale/coal	
PO102	15.20	16.00	Dark shale/coal	
K0102	36.40	37.40	Dark shale/coal	
RO103	18.00	18.80	Dark shale/coal	
RO104	22.60	23.60	Dark shale/coal	
RO105	22.20	23.20	Dark shale/coal	
RO106	19.00	20.00	Dark shale/coal	
NOIDO	34.00	35.00	Dark shale/coal	
RO107	19.30	20.40	Coal	
RO108	17.50	18.50	Dark shale/coal	
	13.40	14.40	Dark shale/coal	
RO109	18.20	19.10	Dark shale/coal	
	35.90 15.20 36.40 15.20 36.40 100 18.00 10104 22.60 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 10.06 34.00 10.06 13.40 26.60 20.20 110 22.80 25.20 111 35.00 13.20 13.20 15.00 20.60	27.00	Dark shale with coal traces	
	20.20	21.00	Dark shale with coal traces	
RO110	22.80	23.70	Dark shale/coal	
	25.20	26.00	Dark shale with coal traces	
RO111	35.00	36.20	Dark shale/coal	
	13.20	14.20	Dark shale/coal	
RO112	15.00	15.70	Dark shale/coal	
RUIIZ	20.60	21.00	Dark shale/coal	
	27.80	28.80	Dark shale/coal	

4.4 Groundwater

4.4.1 A summary of the groundwater strikes encountered during the site investigation are presented in the table below; the groundwater levels observed during monitoring are presented in Appendix D.

Location	Depth to Groundwater (m)	Remarks
WS101	4.00	
WS102	4.00	
WS107	3.00	
WS108	4.00	Within silty clayey sand
WS109	2.00	
WS110	4.00	
WS111	4.00	
WS112	4.00	Within slightly gravelly sand
TP108	1.60	Slight seepage
SA03	1.50	Seepage

4.5 Observations

- 4.5.1 During the works undertaken by BSL observations for both visual and olfactory evidence of contamination were made.
- 4.5.2 No visual or olfactory evidence of contamination was observed.

Side Stability and Ease of Excavation

- 4.5.3 The sides of the trial pits remained stable throughout excavation. TP108 partially collapsed from 1.60m to 1.80m bgl where a slight groundwater seepage was observed.
- 4.5.4 Some difficulty excavating was experienced where boulders were encountered.

5.0 TEST RESULTS

5.1 Chemical Test Results

- 5.1.1 The samples were tested for an assessment of the chemical contamination and results were examined with reference to a selection of guidance documents as detailed in Appendix E. In this case the LQM/CIEH S4ULs for a residential end use with homegrown produce have been adopted as generic Tier 1 screening values.
- 5.1.2 The apparent exceedance of the relevant Tier 1 generic screening value is taken as indicating further detailed assessment or remedial action is required.

Metals

5.1.3 None of the tested metals were elevated above their respective screening values.

Polyaromatic Hydrocarbons (PAHs)

5.1.4 None of the tested PAHs are above their respective laboratory level of detection.

<u>Phenols</u>

5.1.5 None of the tested phenols are above their respective laboratory level of detection.

<u>Asbestos</u>

5.1.6 Asbestos was not present within the two made ground samples tested.

Total Organic Carbon (TOC)

5.1.7 Eleven out of the twelve samples tested were less than 1%. The made ground sample from WS108 at 1.20m had a TOC content of 4.6%.

5.2 Geotechnical Testing

- 5.2.1 Plasticity index results within the natural strata ranged between 10% and 19% indicating the clays to be of low to medium plasticity.
- 5.2.2 After modification of particle size in accordance with NHBC Chapter 4.2 the modified plasticity indices range between 9% and 19% indicating the soils to be of low volume change potential.

5.3 Aggressive Ground Conditions

5.3.1 Water soluble sulphate testing was undertaken on 12 samples of the natural strata. The results revealed soluble sulphate (SO₄) contents of between 0.0093 g/l and 1.4 g/l. Associated pH values were obtained which ranged between 6.1 and 8.6 indicating slightly acid to slightly alkaline conditions.

5.4 Waste Acceptance Criteria (WAC) Results

5.4.1 The Landfill Directive (Directive 1999/31/EC on the landfilling of waste) led to the establishment of a methodology for classifying wastes. Wastes can only be accepted at a landfill if they meet the relevant Waste Acceptance Criteria (WAC) for that type of landfill. There are three different WAC, these are for:

- Inert waste
- Non –hazardous waste
- Hazardous waste
- 5.4.2 Wastes should first be classified based on their total concentrations as detailed in the previous section. WAC testing is then required if the end disposal route is a landfill.
- 5.4.3 Solid and eluate WAC analysis was undertaken on one sample, the findings of which is presented in the table below.

Location	Depth (m)	Strata Type	WAC Analysis
WS108	0.30	MG: Firm brown slightly gravelly sandy clay with gravel of glass, pottery, siltstone, sandstone.	Inert

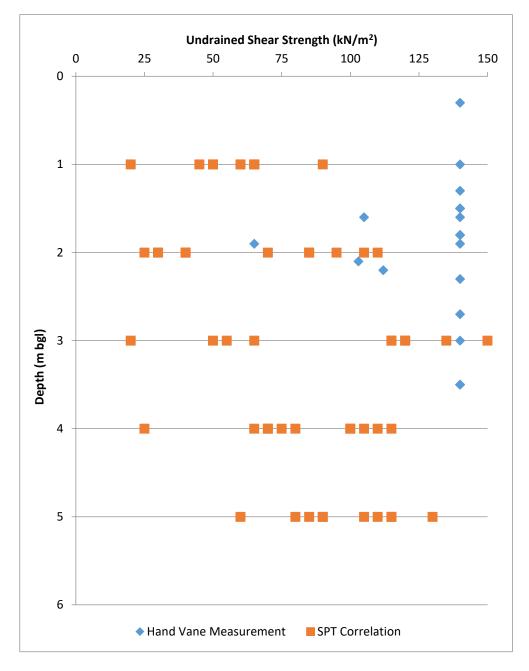
5.5 Soil Percolation Test Results

5.5.1 Soil percolation tests were undertaken at eight locations across site, a summary of the results is presented in the table below:

Location	Infiltration Rate (m/sec)
SA01	6.31x10 ⁻⁸
SA02	2.18x10 ⁻⁶
SA03	1.90x10 ⁻⁶
SA04	6.94x10 ⁻⁷
SA05	6.09x10 ⁻⁸
SA06	1.12x10 ⁻⁶
SA07	3.19x10 ⁻⁷
SA08	1.11x10 ⁻⁶

5.5.2 The full test results are presented in Appendix F.

6.0 GEOTECHNICAL ASSESSMENT


6.1 General

- 6.1.1 Made ground was only encountered in localised areas down to between 0.30m and 0.40m, and in an isolated area down to 2.00m. Topsoil was present across site down to between 0.10m and 0.50m bgl. Firm to stiff friable slightly gravelly sandy clay was present across site, clay was generally present down to bedrock between 12.00m and 18.00m bgl. The clay was locally soft. Sand and gravel was present overlying the bedrock from between 13.50m and 15.40m bgl.
- 6.1.2 Bedrock generally comprised interbedded grey sandstone and mudstone, with sandstone being more prevalent towards the top of bedrock. A number of coal seams of varying quality were encountered across site up to 1.20m thick at a minimum depth of 13.20m bgl. No evidence of broken ground or voids was encountered.
- 6.1.3 A rising main is indicated to cross the site near the southern boundary and will need to be considered prior to development at the site.

6.2 Soil Parameters

6.2.1 SPT and shear vane testing was undertaken on site and the test results have been evaluated to derive geotechnical soil parameters. A depth vs Undrained Shear Strength (Cu) value graph is presented overleaf to provide a profile of the ground conditions underlying the site. SPT N values were correlated to Cu values using the method derived by Stroud (1975). From the graph below it is apparent that the Cu derived from SPT N values are lower than those measured directly at a similar depth.

6.2.2 Characterisation of the geotechnical parameters above has been undertaken to obtain a characteristic value, which is a cautious estimate of the value affecting the occurrence of the limit state. A characteristic value of 50 kN m² has been selected for 1.0m bgl within the clays. Soils strengths gradually increased with depth except for where groundwater was present and resulted in ground softening during drilling.

6.3 Foundations

6.3.1 The most suitable foundations for houses in this area are considered strip foundations. The clay on the site is of low volume change potential, therefore the foundations should be at a minimum depth of 0.75m in the clay, deeper near trees and hedges in accordance with NHBC Chapter 4.2.

- 6.3.2 Made ground was encountered locally to depths of between 0.30m and 0.40m and locally down to 2.00m bgl. Foundations will need to be taken to the underside of this to found on undisturbed natural strata.
- 6.3.3 For a 600mm wide strip foundation founding at 0.75m bgl, a nett allowable bearing pressure not exceeding 110kN/m² should be assumed.
- 6.3.4 It is possible that a change in bearing stratum across individual plots may occur in across the site. If any sudden changes from clay to sand or gravel are encountered reference should be made to a suitably qualified engineer. Recommendations may include that the foundations should either be deepened to found on the same stratum, or reinforced to reduce the potential for differential settlement.
- 6.3.5 The bearing stratum should be inspected for 'soft spots' within the natural clay strata, resulting for instance from localised perched groundwater. Any such soft spots should be dealt with in accordance with good site practice.
- 6.3.6 If the ground conditions encountered during the construction phase differ significantly to the conditions encountered during construction, work should cease and BSL contacted for further advice.
- 6.3.7 During the construction phase supervision should be on a continuous basis to check the design assumptions are correct and construction conforms to design. Supervision should include inspections, Control Ground Investigations and monitoring.
- 6.3.8 Foundations should be a suitable distance away from the rising main crossing the site in agreement with the utility providers advice.

6.4 Building Near Trees

- 6.4.1 Foundations within cohesive strata in the vicinity of existing, proposed or recently removed trees should be adjusted in full accordance with NHBC Standards Chapter 4.2. All foundations should be deepened below roots of greater than 5mm diameter during excavations for footings.
- 6.4.2 A survey of all trees and hedges on the site and within an influencing distance of foundations should be undertaken to identify tree species and heights. This information will be required to assess the effects of trees on the cohesive strata.
- 6.4.3 Where foundation depths due to trees already present or recently removed exceeds 1.50m there is a possibility for heave to occur on removal of the tree. NHBC guidance states that compressible material or void former is required against the inside face of all external wall foundations.

6.5 Floor Slabs

- 6.5.1 Due to the site being within an area requiring full radon precautions, floor slabs will need to be suspended to accommodate the ground gas precautions.
- 6.5.2 Where foundation depths due to trees already present exceeds 1.50m there is a possibility for heave to occur on removal of the tree. NHBC Guidance states that either a precast concrete floor, a suspended timber or in-situ concrete floor must be

used, we recommend the former. The required void size for beneath floor slabs on this site is 200mm.

6.6 Construction

- 6.6.1 Instability of excavations through natural soils is not anticipated provided they are not exposed to adverse weather conditions for any substantial period of time. All excavations should be carried out in accordance with CIRIA Report 97 'Trenching Practice'.
- 6.6.2 Excavation depths should generally be readily achieved using conventional plant (JCB or similar) although high specification plant (tracked 360° or similar) is recommended to maintain the build programme. Progress may be slowed where boulders are encountered within the clay.
- 6.6.3 A characteristic value for soluble sulphate content of the soils on site has been determined from the highest 20% as 0.3182 g/l. A characteristic value for pH has been calculated from the lowest 20% of values as 6.3.
- 6.6.4 Due to the impermeable nature of the strata on site it is considered that groundwater is static.
- 6.6.5 The results of laboratory pH and sulphate content indicate that ACEC Class AC-1 and sulphate class DS-1 conditions prevail in accordance with BRE Special Digest 1 "Concrete in aggressive ground" 2005. The specific concrete mixes (the Design Concrete Class) to be used on site will be determined by the site specific concrete requirements in terms of the durability and structural performance. These are assessed in terms of the Structural Performance Level (SPL) and any need for Additional Protective Measures (APM) detailed in Part D of BRE Special Digest 1 with further guidance in Pt E and F.

6.7 Highways

- 6.7.1 CBR values of 2% 5% are likely to be achieved in undisturbed natural soils for pavement design purposes, unless proven otherwise by in-situ testing at sub-base level by a specialist geotechnical engineer.
- 6.7.2 Some reengineering of the subgrade may be required prior to highway construction to achieve the required design CBR value.

6.8 Soakaways

6.8.1 Based on the low rates of infiltration obtained, soakaway drainage will not be feasible for the site.

6.9 Coal Mining Subsidence

6.9.1 The Desk Study identified a moderate risk from coal mining subsidence due to the coal seam anticipated to be underlying the site being identified as likely to be locally worked. Additionally it was calculated that there was likely an insufficient thickness of rock cover above the coal seam for subsidence not to affect the surface.

- 6.9.2 Coal has been identified as up to four seams across site with the shallowest seam being encountered from between 13.20m and 35.00m bgl. The coal seams varied in thickness from 0.40m to 1.20m.
- 6.9.3 Evidence of coal mine workings can be represented by voids, broken ground and/or loss of flush with evidence of potential workings indicated by intact coal of a suitable workable thickness and quality. An assessment should be made based on all the available evidence.
- 6.9.4 CIRIA SP32 calculates that collapses from any mine workings would migrate no more than ten times the seam thickness within competent rock cover. The maximum rock cover observed was 21m over a 1.20m seam, however was as little as 0.40m over a 1.0m thick seam.
- 6.9.5 This suggests that there is locally insufficient rock cover to prevent subsidence from collapsed mine workings from reaching the surface, however due to the poor quality of the coal and no evidence of mine workings being encountered (no loss of flush in any of the twelve holes drilled), it is considered unlikely that the seams on site will have been worked. Additionally, the thickness of superficial strata, between 12.00m and 15.00m thick, reduces the risk of mining related subsidence.
- 6.9.6 Due to the thickness of superficial strata the risk from unrecorded mine entries on site is considered low, particularly in light of the lack of evidence of mine workings from the rotary open holes
- 6.9.7 Therefore the overall risk from mining is considered low.

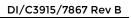
7.0 ENVIRONMENTAL ASSESSMENT

7.1 Contamination

Soils

7.1.1 Samples were tested within the top 0.50m of the superficial deposits across site to identify the risk to human health. None of the tested determinands were elevated above their respective residential with homegrown produce screening values.

Permanent Ground Gases


- 7.1.2 Total Organic Carbon (TOC) content was used in line with CL:AIRE RB17 to identify whether the site is at risk from carbon dioxide and methane.
- 7.1.3 The majority of the samples tested contained less than 1% TOC which RB17 correlated with Characteristic Situation 1 (CS1) of Wilson and Card, this is equivalent to the Green classification of the NHBC traffic light system i.e. no risk from carbon dioxide and methane.
- 7.1.4 One sample from localised deep made ground from WS108 comprising soft dark grey slightly silty clay contained 4.6% TOC which places it within CS3. However, in accordance with RB17, given the buildings will include full radon precautions this is unlikely to present a risk to site end users, however this will need to be agreed with the Local Authority. Due to the localised extent of this stratum, excavation of the materials could be explored and hence the removal of the potential ground gas source.

7.2 **Qualitative Risk Assessment**

- 7.2.1 The risk assessment methodology used in this instance is based on **Source – Pathway** - Receptor (SPR) philosophy. The source is the presence of contamination, or substance/event likely to cause harm. The receptor is the target that may be detrimentally affected by the source. The pathway is the means of the contamination to move from the source to the receptor. Where any of these three factors are removed there is deemed to be no risk. Further information on the methodology used is presented in Appendix G and Appendix H.
- 7.2.2 The CSMs have been revised based on the findings of the site investigation and laboratory testing results.

Potential Source	Potential Pathway	Potential Receptor	Likelihood	Severity	Level of Risk
		<u>ON-SITE</u>			
Made Ground	Ingestion, direct contact, inhalation of dusts.	End-users	Unlikely	Medium	Low
Historic Pond (Ground Gas)	and/or asphyxiant gases		Unlikely	Severe	Moderate/ Low
onmental Asse	essment Report	17		Stewart	Milne Homes

Human Health

Potential Source	Potential Pathway	Potential Receptor	Likelihood	Severity	Level of Risk
		ON-SITE			
Historic Landfill (Made ground/ ground gas)	Ingestion, direct contact, inhalation of dusts. Accumulation of explosive and/or asphyxiant gases.	End-users	Unlikely	Medium	Low
Coal Seams (Ground/mine gas)	Migration of explosive and/or asphyxiant gases into confined spaces.	End-users	Unlikely	Severe	Low
Radon	Migration of gases into confined spaces.	End-users	Likely	Medium	Moderate
		OFF-SITE			
Historic Pits (Ground gas)	Migration of explosive and/or asphyxiant gases into confined spaces.	End-users	Unlikely	Severe	Moderate/ Low
Historic Colliery	Ingestion, direct contact, inhalation of dusts.	End-users	Unlikely	Medium	Low
Historic Landfill (Ground gas)	Migration of explosive and/or asphyxiant gases into confined spaces.	End-users	Unlikely	Severe	Moderate/ Low

Human Health Justification

- 7.2.3 Made ground was very localised and did not contain any elevated contaminants, with the concentrations of the tested determinands within the made ground similar to the natural soils. Therefore the risk to site end-users is low.
- 7.2.4 No organic rich soils or deep made ground were identified in the area of the historic pond, additionally this area is intended to be Public Open Space, therefore the risk to site end-users is considered moderate to low.
- 7.2.5 WS106 was positioned at the coordinates given for the historic landfill in the Groundsure Report and did not encounter any made ground. Additionally no evidence of a landfill was observed within any of the other exploratory holes. Therefore the risk from the historic on-site landfill is low.
- 7.2.6 No emissions of gas were detected while drilling through the coal seams and there is a significant thickness of impermeable strata above the bedrock, therefore the risk from mine gas emissions is considered low.

- 7.2.7 The site is indicated to be in an area requiring full radon precautions and given the site end-use it is considered likely that end-users would come into contact with the gas. Therefore the risk is considered moderate.
- 7.2.8 Despite the friable nature of the clay across site, soakaway testing has identified very low permeabilities making it unlikely that any off site contamination would be able to migrate on site, additionally no contamination has been identified on site, hence the risk is considered moderate to low.

Potential Source	Potential Pathway	Potential Receptor	Likelihood	Severity	Level of Risk
Made Ground	Migration through groundwater or granular soils	Superficial Secondary Aquifer – Undifferentiated	Unlikely	Medium	Low
Made Ground	Migration through groundwater or granular soils	Bedrock Secondary (A) Aquifer	Unlikely	Medium	Low
Off-site Historic Landfill	Migration through groundwater or granular soils	Superficial Secondary Aquifer – Undifferentiated	Unlikely	Medium	Low
Off-site Historic Landfill	Migration through groundwater or granular soils	Bedrock Secondary (A) Aquifer	Unlikely	Medium	Low

Controlled Waters

Controlled Waters Justification

- 7.2.9 The chemical determinands tested for were only present within the soils at very low concentrations or less than the laboratory level of detection and are therefore unlikely to leach out of the soils at concentrations that would impact the quality of groundwater. Additionally, a significant thickness of impermeable strata is present across the area preventing the migration of any groundwater. There are also no surface water or groundwater abstractions within 1000m of the site. The nearest watercourse is an artificial lake 66m north of the site.
- 7.2.10 As there are no on-site sources of contamination and no pathway for contaminants to migrate, the risk to controlled waters is considered low.

7.3 Remedial Measures

- 7.3.1 The site is within an area requiring full radon precautions and these should be included in the floor slab design.
- 7.3.2 A watching brief should be in place to identify any evidence of the historic landfill and the backfilled pond.

7.4 Health and Safety Issues

7.4.1 During the reclamation and construction phases of the site development it will be necessary to protect the health and safety of site personnel. The risk to construction and ground workers is assessed in the table below:

Potential Source	Potential Pathway	Potential Receptor			Level of Risk						
<u>ON-SITE</u>											
Made Ground	Ingestion, direct contact, inhalation of dusts.	Construction Workers	Unlikely	Medium	Low						

Discussion

- 7.4.2 General guidance on these matters is given in the Health and Safety Executive (HSE) document "Protection of Workers and the General Public during the Redevelopment of Contaminated Land". In summary, the following measures are suggested to provide a minimum level of protection:
 - All ground workers should be issued with the relevant protective clothing, footwear and gloves. These protective items should not be removed from the site and personnel should be instructed as to why and how they are to be used.
 - Hand-washing and boot-washing facilities should be provided.
 - Care should be taken to minimise the potential for off-site migration of contamination by the provision of dust suppression control and wheel cleaning equipment during the construction works.
 - Good practices relating to personal hygiene should be adopted on the site.
 - The contractor shall satisfy the Health and Safety Executive with regard to any other matters concerning the health, safety and welfare of persons on the site.

7.5 Waste

7.5.1 Details of how material should be classified for waste disposal are presented in Appendix I.

Waste Acceptance Criteria

- 7.5.2 WAC testing undertaken on the thickest made ground in WS108 identified that if the end disposal route of the made ground is landfill, then material may be accepted at an Inert Landfill.
- 7.5.3 The possibility of automatic inert classification of the natural soils should be explored in accordance with Section 4.3 of the EA guidance document. The Council Decision includes a list of wastes in Section 2.1.1 of the document that are assumed to be inert and therefore acceptable at a landfill for inert waste without testing, this is the case if:
 - They are single stream waste of a single waste type (although different waste types from the list may be accepted together if they are from a single source) and
 - There is no suspicion of material or substances such as metals, asbestos, plastics, chemicals, etc to an extent which increases the risk associated with

the waste sufficiently to justify contamination and they do not contain other their disposal in other classes of landfill.

<u>General</u>

- 7.5.4 If any gross hydrocarbon contaminated material is encountered during the construction phase, it is possible that this may be classified as hazardous and testing should be undertaken at that time.
- 7.5.5 Where it is necessary to dispose material off site it is recommended that materials are segregated and where necessary sufficient time is allowed to further classify the material properly, including discussion with landfill sites and waste transfer stations to find the best disposal route.
- 7.5.6 As a significant proportion of the soils likely to be generated on site are clean it is recommended that where possible that the soils could be recycled at a suitable local waste treatment plant or transfer station rather than a landfill disposal route.
- 7.5.7 If the reuse of soils is proposed on the site this should be done in accordance with the CL:AIRE "Development Industry Code of Practice for the Definition of Waste" (CL:AIRE CoP). Further guidance is provided on this in Appendix J. Any re-use scheme should be designed to minimise disposal costs.

7.6 Compliance

- 7.6.1 It is recommended that the approval of the Local Authority is obtained for to the proposed remedial schemes prior to any irrevocable action being taken.
- 7.6.2 Once the above body has approved the outline remedial proposals a remediation strategy should be produced. As the main remedial requirement is in respect to ground gas (radon), then this would simply comprise a Verification Plan for the gas protection measures. This will also give guidance to enable a suitably qualified contractor to carry out the works.

8.0 CONCLUSIONS

8.1 Summary

<u>Environmental</u>

- 8.1.1 No elevated contaminants are present within the shallow soils on-site.
- 8.1.2 Evidence for the on-site historic landfill identified within the desk study was not encountered.
- 8.1.3 A watching brief should be in place to identify any evidence of the historic landfill and historic pond.
- 8.1.4 The risk to end-users from on-site historic land use is considered low. The risk from off-site sources is considered low due to the low permeability of the on-site soils.
- 8.1.5 The risk to controlled waters is considered low due to the lack of on-site contamination and the low permeability of the soils.
- 8.1.6 The site falls into the CS1/Green classification for ground gas risk, however full radon precautions are required.

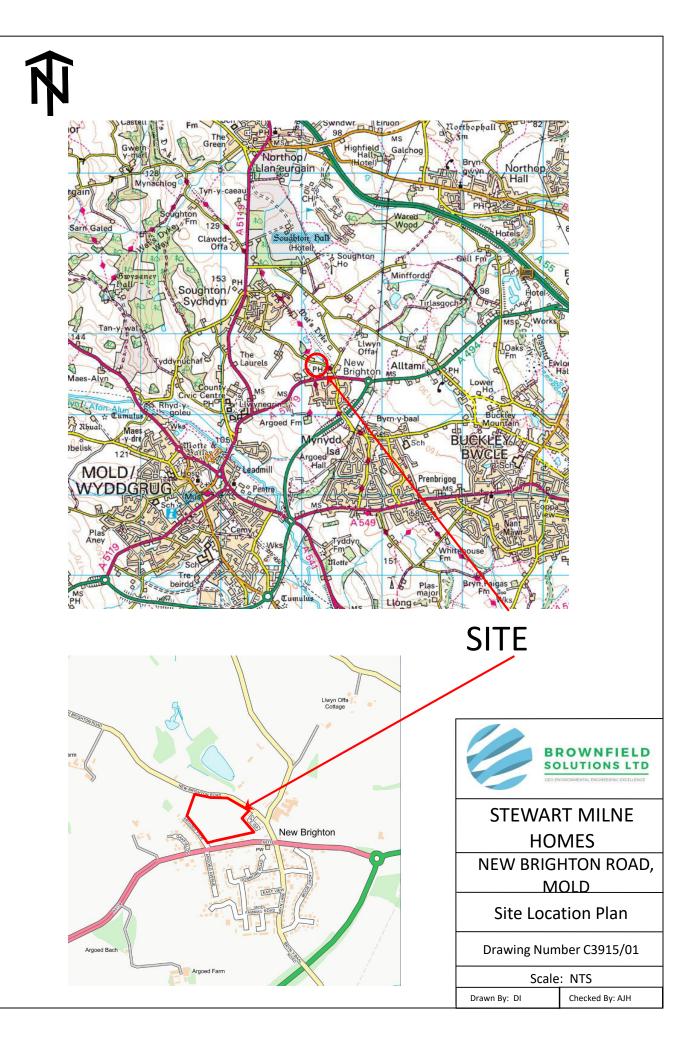
Geotechnical

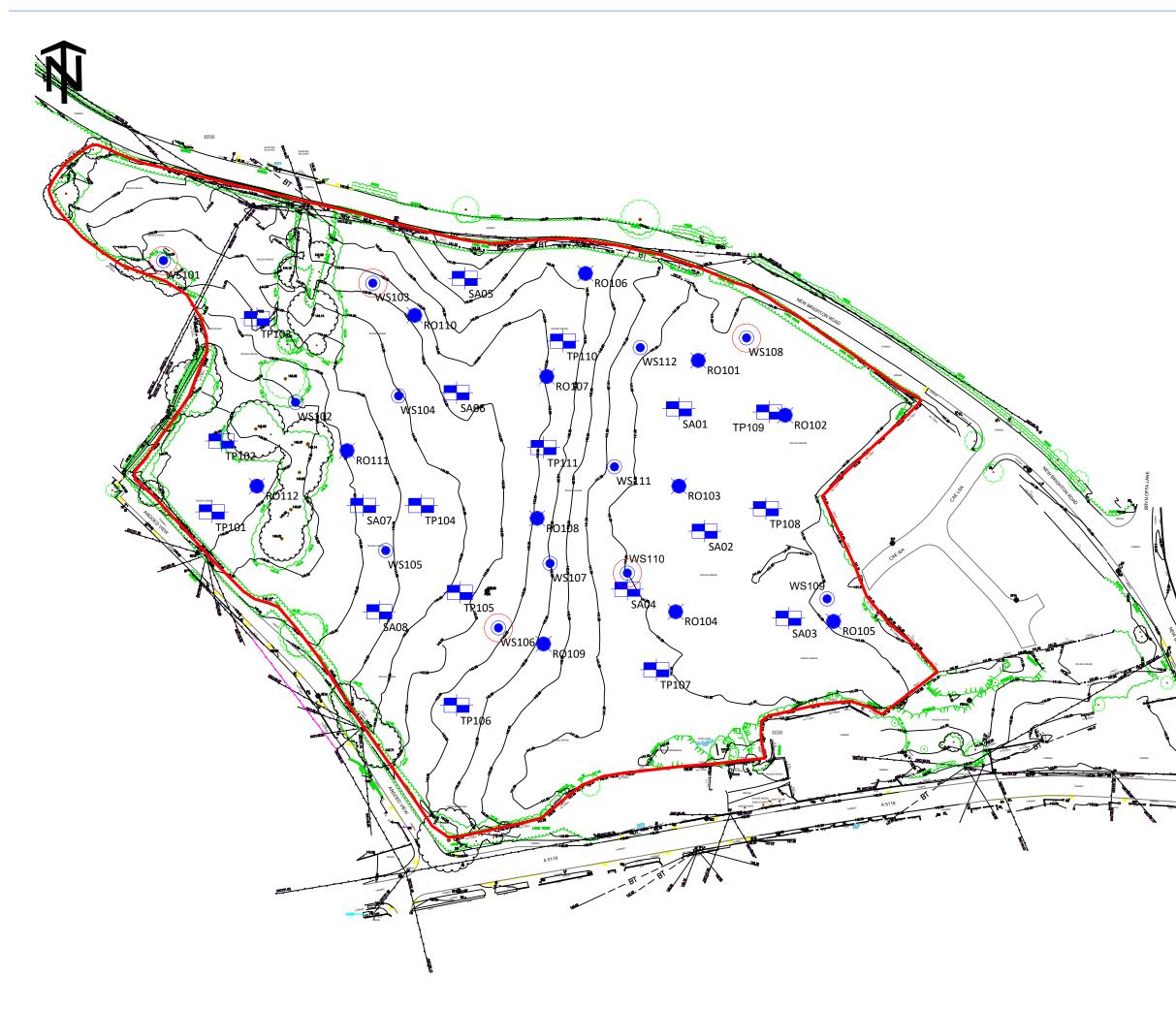
- 8.1.7 The most suitable foundations for houses in this area are considered strip foundations, taken through any made ground, founding a minimum depth of 0.75m bgl within the brown orange slightly gravelly silty sandy clay, where a safe bearing pressure of 110 kN/m² should be assumed. Floor slabs will need to be suspended to accommodate full radon precautions.
- 8.1.8 Soakaways will not be feasible for the site given the low permeability results obtained.
- 8.1.9 Due to the quality of coal encountered, the thickness of superficial deposits, and lack of broken ground or loss of flush, the risk from mining subsidence is considered low.
- 8.1.10 CBR values of 2% 5% are likely to be achieved in undisturbed natural soils and proven by in-situ testing.

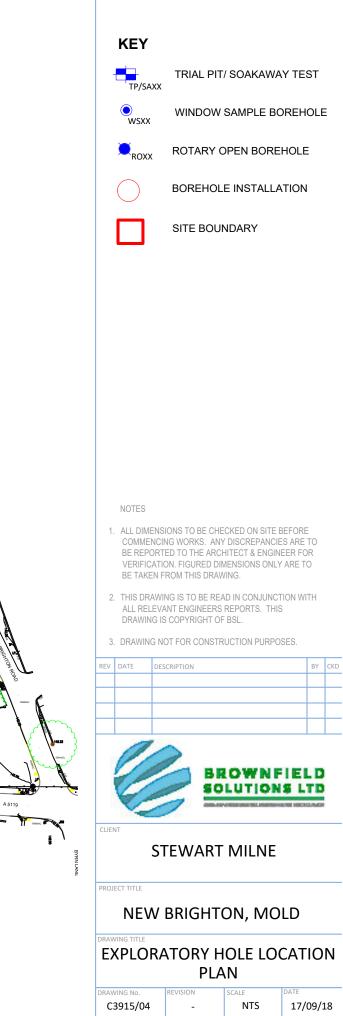
8.2 Further Work

- 8.2.1 The following further work is considered necessary to progress the site to construction phase:
 - Tree survey by qualified arboriculturist.
 - Production of Verification Plan for Radon Protection Measures (Remedial Strategy).
 - Detailed foundation design.

9.0 **REFERENCES**


- 1. British Standards Institution. *Soils for civil engineering purposes*. BS1377:1990.
- 2. British Standards Institution. *Investigation of Potentially Contaminated sites code of practice*. BS 10175:2011 (2nd Ed).
- 3. British Standards Institution *'Code of Practice for Site Investigations'* BS 5930:2015
- 4. British Standards Institution "Geotechnical investigation and testing Identification and classification of soil" BS EN ISO 14688:2002.
- 5. British Standards Institution "Geotechnical investigation and testing Identification and classification of rock" BS EN ISO 14689:2002.
- 6. BRE Report BR211 '*Radon Guidance on protective measures for new buildings*' 2015 Edition.
- 7. BRE Special Digest 1: "Concrete in Aggressive Ground" 3rd Ed 2005.
- 8. CIRIA 149 "Protecting development from methane" 1995.
- 9. CIRIA 150 "Methane Investigation Strategies" 1995.
- 10. CIRIA 151 "Interpreting measurements of gas in the ground" 1995.
- 11. CIRIA 152 "Risk assessment for methane and other gases from the ground" 1995.
- 12. CIRIA 552 "Contaminated Land Risk Assessment A guide to good practice" 2001.
- 13. CIRIA C665 "Assessing Risks Posed by Hazardous Ground Gases to Buildings" 2007.
- 14. Wilson & Card "*Proposed method classifying gassing sites*" Ground Engineering 1999.
- 15. Card & Steve Wilson in "*A pragmatic approach to ground gas risk assessment for the 21st Century*" CIRIA/Environmental Protection UK Ground gas seminar 2011
- 16. The Hazardous Waste (England) Regulations 2005.
- 17. Environment Agency Hazardous Waste: "*Guidance on the classification and assessment of waste*" WM3 ver 1 May 2015.
- 18. The National Planning Policy Framework (NPPF) March 2012
- 19. DETR. Circular 02/2000 Contaminated Land.
- 20. Environment Agency, 2009 'Using Soil Guideline Values'.
- 21. Environment Agency, 2009 'Updated Technical Background to the CLEA model'.
- 22. Environment Agency, 2009 'Human health toxicological assessment of contaminants in soil'.
- 23. Department of the Environment, 1994, CLR Report No 1 'A framework for assessing the impact of contaminated land on groundwater and surface water'.
- 24. Department of the Environment, 1994, CLR Report No 2 'Guidance on Preliminary Site Inspection of Contaminated Land'.
- 25. Department of the Environment, 1994, CLR Report No 3 'Documentary research on Industrial Sites'.




- 26. Department of the Environment, 1994, CLR Report No 4 'Sampling Strategies for Contaminated Land'.
- 27. DEFRA and the Environment Agency, 2002-2004, CLR10 'Soil Guideline Value Reports for Individual Soil Contaminants'.
- 28. DEFRA and the Environment Agency, 2004, CLR Report No 11 'Model Procedures for the Management of Contaminated Land'.
- 29. Nathanail, C. P., McCaffrey, C., Gillett, A., Ogden, R. C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- 30. CL:AIRE, 2014 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination'.
- 31. Health & Safety Executive, 1991. 'Protection of Workers & the General Public during the Development of Contaminated Land'.
- 32. Environment Agency & NHBC, 2000. R&D Publication 66. Guidance for the Safe Development of Housing on Land Affected by Contamination.
- 33. Environment Agency "Guidance on the classification and assessment of waste (1st edition 2015) Technical Guidance WM3"
- 34. NHBC Standards 2006
- 35. CL:AIRE *"The Definition of Waste: Development Industry Code of Practice"* Version 2 March 2011.
- 36. CIRIA "Asbestos in soil and made ground: a guide to understanding and managing risks" C733 2014
- 37. Privett, K D, Matthews, S C, & Hodges, R, A, 'Barriers, liners and cover systems for containment and control of land contamination' 1996. CIRIA Special Publication 124.
- 38. BRE Digest 365 "Soakaway Design" 2007.
- 39. Specification for Highways Works Series 600 Earthworks November 2006.

DRAWINGS

JMC

APPENDIX A Exploratory Hole Logs

	IELD S LTD		re,			Tr	rial Pit Log	TrialPit SA0 Sheet 1	1
Project Name:	t NEW BR	V BRIGHTON ROAD Project No. C3915					Co-ords: 325244.00 - 365576.00	Date	
				C39	15		Level: Dimensions	21/08/20 Scale	
ocation: NEW BRIGHTON, MOLD						(m):	1:25		
Client:				1	1		Depth 2.30	Logge DI	a
Water Strike		ples & In Si	Ū	Depth (m)	Level (m)	Legend	Stratum Description		
5 00	0.20 0.50	Type ES ES	Results	0.30			Grass over brown grey slightly clayey SAND w Sand is fine grained. (TOPSOIL) Stiff friable grey sandy CLAY. Sand is fine grain fibrous organic material.		-
	1.40	D		1.00			Firm friable brown orange silty sandy CLAY. Sa grained.	and is fine	1
	1.60	HSV	HSV=105kPa	1.60			Soft to firm purplish brown sandy silty CLAY. S grained.	and is fine	-
	2.30	D		2.30			End of Pit at 2.30m		3
									4
	ter 1 No er		r encountered.						5
stabilit	2. Soaka	away test	undertaken in tria	ll pit.				AC	D iS

William Smith House, 173-183 Witton Street, Northwich, Cheshire, CW9 5LP						Tr	rial Pit Log	TrialPit SA0 Sheet 1	2 of ′
Project NEW BRIGHTON ROAD				-			Co-ords: 325252.00 - 365538.00 Level:	Date 21/08/20	
ocation: NEW BRIGHTON, MOLD			038	15		Dimensions	Scale		
							(m): Depth	1:25 Logge	
ient:			HOMES		1		2.10	DI	,u
Strike		nples & In S	•	Depth (m)	Level (m)	Legend	Stratum Description		
. 05	Depth	Туре	Results	(,	(,		Grass over brown grey clayey SAND with rootlet	s. Sand is	1
	0.10	ES					fine grained. (TOPŠOÍL)		
	0.30	D		0.25			Soft to firm grey silty sandy CLAY with rootlets. S fine grained.	and is	
	0.30	HSV	HSV=140kPa			××	ine granea.		
				0.60		×	Firm friable locally laminated brown orange silty	sandv	
						×_ ×	CLAY. Sand is fine grained.		
						××			1
	1.50	D							
						××			
				1.80		××			
	1.90	D		1.00			Soft purplish brown silty sandy CLAY. Sand is fin	e grained.	
	1.90	HSV	HSV=65kPa	2.10					2
				2.10			End of Pit at 2.10m		
									4
									5
mar	ks: 1. No gr 2. Soaka	oundwate away test	er encountered. undertaken in tria	al pit.				∎⊤	T
				•				ΛC	iS

BROWN	FIELD		re,			T	rial Pit Log	TrialPit SA0 Sheet 1	3
^{>} rojec Name	t . NEW BR	BRIGHTON ROAD Project No. C3915				Co-ords: 325278.00 - 365511.00	Date		
				C39	15		Level: Dimensions	21/08/2 Scal	
Locati	on: NEW BR	IGHTON,	MOLD				(m):	1:25	
Client		STEWART MILNE HOMES Samples & In Situ Testing					Depth	Logge DI	a
Water Strike			•	Depth	Level	Legend	Stratum Description		
	Depth 0.20 0.40 1.30 1.50 1.90 1.90	Type ES ES HSV D HSV	Results HSV=140kPa	(m) 0.30 0.70 1.80 2.00	(m)		Stratum Description MADE GROUND: Grass over brown grey clayey Sand is fine grained. Rare medium to coarse an gravel of glass and pottery. Firm grey mottled brown silty sandy CLAY. Sand grained. Fibrous organic material. Firm brown orange silty sandy CLAY. Sand is fir Firm purplish brown silty sandy CLAY. Sand is fi grained. End of Pit at 2.00m	gular is fine e grained.	- 2
ema	rks: 1. Grour 2. Soaka	ndwater se away test	eepage at 1.50m undertaken in tria	bgl. I pit.					5

			n Smith House, 33 Witton Street,					TrialPit	No
		Northw	/ich,			T	rial Pit Log	SA04	4
BROWN	FIELD NS LTD	Chesh CW9 5	ire, iLP					Sheet 1	of 1
Projec		GHTON	ROAD		ject No.		Co-ords: 325228.00 - 365520.00	Date	
Name	:			C39	915		Level: Dimensions	21/08/20 Scale	
Locati	on: NEW BRI	GHTON	, MOLD				(m):	1:25	
Client	: STEWAR	T MILNE	HOMES				Depth 2.00	Logge DI	d
Water Strike	Sam	oles & In S	itu Testing	Depth	Level	Legend	Stratum Description		
Str	Depth	Туре	Results	(m)	(m)	Legend		<u> </u>	
	0.10	ES					Grass over brown grey clayey SAND with rootlets fine grained. (TOPSOIL)	s. Sand is	
				0.30					
	0.40	D				×	Firm to stiff grey friable silty sandy CLAY with roo Sand is fine grained.	liets.	
	0.60	D		0.50		××	Firm friable brown orange silty sandy CLAY. Sanc grained.	l is fine	
						$\frac{\times \times}{\times - \times}$	g		
						×			
						<u>x</u>			1 _
						×			
						×			
						×			
	1.60 1.60	D HSV	HSV=140kPa			<u>× </u>			
	1.80	D	H3V-140KFa	1.80		×			
	1.80	HSV	HSV=140kPa			×	Soft laminated purplish brown silty sandy CLAY. S fine grained.	Sand is	
				2.00			End of Pit at 2.00m		2
									-
									3
									-
									4 _
	rka, 1 No ara	undwate	er encountered.						5 —
Rema	2. Soaka	way test	undertaken in tria						
Stabili		vanes n	ot possible due to	Triability	of clay.			AG	iS

			Smith House,						TrialPit	No
		Northw Cheshi	ire,			Ti	rial Pit Log	3	SA0	
BROWNF	IELD S LTD	CW9 5	LP				1		Sheet 1	
Project Name:	t NEW BRI	GHTON	ROAD		Project No.		Co-ords: 325176.00 - 30	65621.00	Date	
ivame.				C	3915		Level:		22/08/20 Scale	
Locatio	on: NEW BRI	GHTON,	MOLD				Dimensions (m):		1:25	
Client:	STEWAR	T MILNE	HOMES				Depth 2.10		Logge DI	
Water Strike		ples & In S		Dept		Legend	Stratur	n Description		
≤ ŭ	Depth	Туре	Results	(m)) (m)		MADE GROUND: Grass of	ver brown grey slightly	gravelly	_
	0.10 0.40 1.40 2.10	ES ES D		2.10			Becoming laminated from 2.00	nedium grained. Gravel to medium of siltstone w boulder content of sai slightly gravelly sandy (el is rounded to subang sandstone.	l is , ndstone. CLAY. ular fine	
Remar	-ks∙ 1. Nogro	oundwate	er encountered.							5
Stabilit	2. Soaka 3. No sh	way test	undertaken in tria s possible due to		y of clay.				AG	U IS

			n Smith House, 33 Witton Street,						TrialPit	No
		Northv	vich,			TI	rial Pit Log		SA0	6
BROWNE	FIELD IS LTD	CW9 5	5LP				0		Sheet 1	of 1
Projec	t NEW BRI	GHTON	ROAD		roject No.		Co-ords: 325175.00 - 365	5581.00	Date	
Name			-	C	3915		Level:		22/08/20	
Locatio	on: NEW BRI	GHTON	, MOLD				Dimensions (m):		Scale 1:25	
Client:	STEWAR	T MILNE	HOMES				Depth 2.00		Logge DI	d
re ê	Sam	ples & In S	itu Testing	Depth	n Level					
Water Strike	Depth	Туре	Results	(m)		Legend		Description		
	0.20	ES		0.30			Grass over brown grey sligh is fine to medium grained. G siltstone. (TOPSOIL)	ravel is rounded fine o	of	
	0.40	D		0.00			Firm friable brown orange sl CLAY. Sand is fine grained. medium of sandstone.	ightly gravelly silty sar Gravel is subangular f	ndy ine to	
							Land drain present at 0.70m bgl.	-		
	1.30	D				× ···× × ···×	Becoming brown red mottled gre gravel of siltstone and charcoal.	y from 1.10m bgl. Fine to coa -	rse	
	1.50	U								
	2.00	D		2.00						2 —
								Pit at 2.00m		
										3
										4
Remai	rks: 1. No gro	oundwate	er encountered.							5
Stabili	3. No sh		undertaken in tria s possible due to		/ of clay.				AC	is

			n Smith House, 33 Witton Street,						TrialPit	No
		Northw	/ich,			TI	rial Pit Log		SA0	7
BROWNF	IELD S LTD	CW9 5	iLP						Sheet 1	of 1
Project	t NEW BR	IGHTON	ROAD		oject No.		Co-ords: 325146.00 - 365546.00		Date	
Name:				C	3915		Level: Dimensions		22/08/20 Scale	
Locatio	on: NEW BR	IGHTON,	, MOLD				(m):		1:25	
Client:	STEWAR	RT MILNE	HOMES				Depth 2.10		Logge DI	d
Water Strike	Sam	ples & In S	itu Testing	Depth		Legend	Stratum Description	·		
Str	Depth	Туре	Results	(m)	(m)	Legend			Dwith	
	0.10	ES		0.25			Grass over brown slightly gravelly claye rootlets. Sand is fine to medium grained rounded fine to medium of siltstone. (TC	l. Gravel is DPSOIL)		
	0.30	D		0.23			Firm friable brown orange slightly grave Sand is fine grained. Gravel is subround fine to medium of sandstone and siltston content of sandstone and siltstone.	led to suba	ngular	
	1.30	D					Boulder of siltstone 600mm diameter at 1.40m b	gi.		
	2.10	D		2.10						2 _
										3
Remar	Soaka	away test	er encountered. undertaken in tria	al pit.						5 -
Stabilit	3. No sh	ear vane	s possible due to	friability	of clay.				AC	S

			n Smith House, 33 Witton Street,						TrialPit	No
		Northw Chesh	vich, ire,			Tr	rial Pit Log	9	SA0	
BROWN	FIELD NS LTD	CW9 5	LP				1		Sheet 1	
Projec Name	. NEW BRI	GHTON	ROAD		oject No.		Co-ords: 325151.00 - 30	65513.00	Date	
INAILIE	•			Ce	3915		Level:		22/08/20 Scale	
Locati	on: NEW BRI	GHTON	, MOLD				Dimensions (m):		1:25	
Client	: STEWAR	Γ MILNE	HOMES				Depth 2.10		Logge DI	d
Water Strike	Samp	les & In S	itu Testing	Depth	Level	Legend		m Description		
Str	Depth	Туре	Results	(m)	(m)		Grass over brown grey sli	·	With	1
	0.20 0.30	ES D		0.25			rootlets. Sand is fine to me subrounded fine to mediu	edium grained. Gravel is m of sandstone. mottled grey slightly gra		
	0.00						sandy CLAY. Sand is fine subangular fine to coarse charcoal. Low cobble cont	grained. Gravel is subro of siltstone, sandstone a	ounded to and	
	1.70	D		2.10			Becoming brown red from 1.3			2
				2.10			End o	of Pit at 2.10m		3
Rema Stabili	2. Soakav 3. No she	way test	er encountered. undertaken in trial s possible due to f		of clay.				AC	u iS

BROWNI	FIELD) ,			T	rial Pit Log	TrialPit TP1(Sheet 1	01 of 1
Projec Name	t NEW BRI	GHTON R	OAD	Proj C39	ect No.		Co-ords: 325099.00 - 365544.00 Level:	Date 20/08/2	
	on: NEW BRI			000	10		Dimensions	Scale	е
							(m): Depth	1:25 Logge	
Client		T MILNE F			1	1	3.00	DI	<i>.</i>
Water Strike		ples & In Situ		Depth (m)	Level (m)	Legend	Stratum Description		
	Depth 0.10	Type	Results	0.40			Grass over brown grey slightly gravelly silty SAN rootlets. Sand is fine grained. Gravel is rounded medium of siltstone. (TOPSOIL)	fine to	
	0.50	D					Firm to stiff friable brown orange mottled grey slig gravelly sandy CLAY. Sand is fine grained. Grave subrounded to subangular fine to coarse of sand	el is	1
	1.40	D					Becoming brown mottled grey slightly gravelly silty sandy cla 1.50m bgl.	y from	2
	2.20	D							
	3.00	D		3.00			Locally becoming clayey slightly gravelly sand from 2.90m by End of Pit at 3.00m	<i>gl.</i>	- 3
									4
Rema	rks: 1. No gro	bundwater	encountered.						5
Stabili	2. No sh	ear vanes	possible due to	friability o	f clay.			A	u GS

		173-183 Northwic Cheshire	Э,			Tr	rial Pit Log	TrialPit TP10)2
ROWNFIE OLUTIONS L	LD .TD	CW9 5L	P					Sheet 1	
Project Jame:	NEW BR		ROAD		ect No.		Co-ords: 325102.00 - 365566.00	Date	
ame.				C39	15			20/08/20 Scale	
ocation	: NEW BR	IGHTON, I	MOLD				Dimensions (m):	1:25	
lient:	STEWAR		HOMES				Depth	Logge	d
r e	Sam	ples & In Situ	u Testing	Denth	Laval		3.00	DI	
Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.30 0.30 0.80	D ES D		0.25			Grass over brown grey slightly gravelly silty SAN rootlets. Sand is fine grained. Gravel is rounded subrounded fine to medium of sandstone and qu (TOPSOIL) Brown orange clayey sandy GRAVEL. Sand is fin medium grained. Gravel is rounded to subangula coarse of siltstone, sandstone and lithorelics of s sandy clay. Stiff friable brown mottled grey slightly gravelly s CLAY. Sand is fine grained. Gravel is subrounde medium of sandstone.	to artz. Ine to Ir fine to tiff friable andy	1
	1.80	D		1.80			Brown gravelly SAND. Sand is fine to medium gr Gravel is subangular fine to medium of lithorelics Boulder of siltstone 300mm diameter at 2.00m bgl.	rained. s of clay.	2
	2.60	D					Low rounded cobble content of limestone and lithorelics of c 2.70m bgl.	lay from	
	3.00	D		3.00			End of Pit at 3.00m		3
									4
									5
emark	e 1. No ar	oundwater	encountered.						
	2. No sh	ear vanes	possible due to	friability o	f clay.				J

BROWNF) ,			Tr	rial Pit Log	TrialPit TP10 Sheet 1)3
Project		IGHTON R	OAD		ect No.		Co-ords: 325113.00 - 365604.00	Date	
lame:				C39	15			20/08/20	
ocatio	on: NEW BR	IGHTON, N	NOLD				Dimensions (m):	Scale 1:25	
Client:	STEWAR		IOMES				Depth 3.00	Logge DI	ed
г e	Sam	ples & In Situ	Testing	Depth	Level				
Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.20	ES					MADE GROUND: Grass over brown grey slightly sand with rootlets. Sand is fine to medium graine is fine rounded of siltstone. Layer of medium to coarse gravels and cobbles of sandstone stones between 0.30m and 0.70m bgl.	d. Gravel	
	0.50	ES		0.40			Brown orange sandy GRAVEL. Sand is fine to co grained. Gravel is subrounded to subangular fine coarse of sandstone, quartz, and lithorelics of stif orange mottled grey sandy silty clay.	to	
	0.90	D		0.80			Firm friable brown mottled grey slightly gravelly s CLAY. Sand is fine grained. Gravel is subrounded angular fine to medium of siltstone.	andy I to	1
	2.20	D		2.80			Becoming brown red from 2.00m bgl.		
	3.00	D		3.00		×	Firm brown orange slightly gravelly sandy silty Cl Sand is fine grained. Gravel is subrounded fine to of siltstone and sandstone. End of Pit at 3.00m	.AY. o medium	- 3
									4
emar	ks: 1. No gro 2. No sh	oundwater ear vanes	encountered. possible due to	friability o	f clay.				5
tabilit	y: Stable.							AC	iS

BROWNI			re,			Tr	rial Pit Log	TrialPit TP10 Sheet 1)4
Projec Name	t NEW BR	IGHTON	ROAD		ect No.		Co-ords: 325164.00 - 365546.00	Date	
				C39	15		Level: Dimensions	20/08/20 Scale	
ocati	on: NEW BR	IGHTON,	MOLD				(m):	1:25	
lient:	STEWAF	RT MILNE	HOMES				Depth 3.00	Logge DI	ed
Water Strike	Sam	nples & In Si	tu Testing	Depth	Level	Logond			
Stri	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.20 0.40	ES D		0.35			MADE GROUND: Grass over brown grey slightly silty sand with rootlets. Sand is fine grained. Gra rounded to subangular fine of quartz and rare po Firm friable brown orange slightly gravelly sandy Sand is fine grained. Gravel is subrounded fine of	vel is ttery. CLAY.	
							siltstone and sandstone.	n quui e,	1
	1.50 1.50	D HSV	HSV=140kPa				Becoming brown mottled grey from 1.00m bgl.		
	1.00								2
	2.50	D					Becoming stiff from 2.50m bgl. Fine gravel of charcoal. Low content of siltstone.	cobble	
	3.00	D		3.00			End of Pit at 3.00m		- 3
									4
									5
ema	rks: 1. No gr	oundwate	r encountered.						⁵
tabili	2. Shear ty: Stable.		ot possible due to	Triability o	of clay.			AC	i GS

	ELD		re,			Tr	rial Pit Log	TrialPit TP10 Sheet 1)5
Project				Proj	ect No.		Co-ords: 325176.00 - 365519.00	Date	
lame:			NO/ID	C39	15		Level:	20/08/20	
ocatio	n: NEW BR	IGHTON,	MOLD				Dimensions (m):	Scale 1:25	
lient:	STEWAR	RT MILNE	HOMES				Depth	Logge	d
	Sam	ples & In Si	itu Testing	Denth	11		3.00	DI	
Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.10	ES		0.20			Grass over brown slightly gravelly silty SAND with Sand is fine grained. Gravel is subrounded to and to medium of siltstone. (TOPSOIL)	gular fine	
	0.30	ES		0.20			Stiff friable brown orange slightly gravelly sandy (Sand is fine grained. Gravel is rounded to subrou to medium of siltstone and limestone.	CLAY. Inded fine	1
	1.20	D					Becoming brown mottled grey and slightly damp from 1.20m	bgi.	1
	1.80 2.00	HSV D	HSV=140kPa				Occasional gravel of charcoal and low cobble content of silts sandstone from 1.80m bgl.	tone and	
							Boulder of bedded sandstone c.450mm diameter at 2.50m bg	j l.	
				3.00			End of Pit at 3.00m		- :
emark	2. Shear	oundwate	er encountered. It possible due to	friability c	of clay.			AC	۰ S

			э,			Tr	rial Pit Log	TrialPit I TP10 Sheet 1 c	6
Project	NEW BRI	GHTON F	ROAD		ect No.		Co-ords: 325175.00 - 365484.00	Date	
lame:				C39	15		Level: Dimensions	20/08/20 Scale	
ocation	: NEW BRI	GHTON, I	MOLD				(m):	1:25	
lient:	STEWAR	T MILNE I	HOMES				Depth 3.00	Logged DI	t
Strike	Samp	oles & In Situ	ı Testing	Depth	Level	Legend	Stratum Description		
5 00	Depth 0.30	ES	Results	(m)	(m)		Grass over light brown grey slightly gravelly silty with rootlets. Sand is fine grained. Gravel is roun subrounded fine to medium of sandstone and silt (TOPSOIL) Brown orange mottled grey clayey very gravelly S Sand is fine to medium grained. Gravel is subang subrounded fine to coarse of siltstone, sandstone lithorelics of very sandy clay. Low cobble content limestone.	ded to stone. SAND. gular to e, and	1
	1.40 2.00	D		1.30		18 18 18 18 18 18 18 18 18 18 18 18 18 1	Firm friable brown mottled grey slightly gravelly s CLAY. Sand is fine grained. Gravel is subangular angular fine to coarse of siltstone, sandstone and charcoal. Boulder of sandstone 300mm diameter at 1.40m bgl. Boulder of limestone 600mm diameter at 2.00m bgl. Clay be dark brown grey from 2.00m bgl	to	2
	3.00	D		3.00			<i>Becoming firm to stiff at 3.00m bgl.</i> End of Pit at 3.00m		ć
									2
									Ę

BROWNF			ire,			Tr	rial Pit Log	TrialPit No TP107 Sheet 1 of	7
roject		IGHTON	ROAD	Proj	ect No.		Co-ords: 325237.00 - 365495.00	Date	
lame:				C39	15		Level:	20/08/201	8
ocatio	on: NEW BR	IGHTON,	, MOLD				Dimensions (m):	Scale 1:25	
lient:	STEWAF	RT MILNE	HOMES				Depth	Logged	
μa	Sam	ples & In S	itu Testing				3.00	DI	
Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.10	ES		0.20			Grass over brown grey slightly gravelly SAND wit rootlets. Sand is fine to medium grained. Gravel i rounded fine to medium of siltstone. (TOPSOIL)	s	
	0.30	D		0.80			Firm to stiff friable grey sandy CLAY. Sand is mea		
	0.90	D		0.80			Firm friable brown silty sandy CLAY. Sand is fine		1
	2.00	D HSV	HSV=112kPa	2.00			Firm laminated purplish brown silty sandy CLAY. fine grained.	Sand is	2
	3.00 3.00	D HSV	HSV=140kPa	3.00			End of Pit at 3.00m		2
emar tabilit	2. Shear	vanes no	er encountered. ot possible due to	friability o	of clay.			AGS	5

BROWNE	IS LTD		re,			Tr	rial Pit Log			TrialP TP1 Sheet	08 1 of	
Projec Name:		IGHTON	ROAD	Proj C39	ect No. 15		Co-ords: 325271.00 - 365545.00 Level:			Da /20/08		3
Locati	on: NEW BR			000	10		Dimensions			Sca		
							(m): Depth			1:2 Log		
Client:	STEWAR	T MILNE	HOMES	1	1		3.50			D		
Water Strike	Sam	ples & In Si	tu Testing	Depth	Level	Legend	Stratum Description					
Wat Strin	Depth 0.20 0.40 1.60 2.10 2.20 3.50	Type ES ES D HSV D	Results HSV=103kPa	2.10 0.30 0.60		Legend Regend Regend Regend Regend	MADE GROUND: Grass over brown grey slig slightly gravelly sand with rootlets. Sand is fin Gravel is subrounded to angular fine to mediu siltstone, sandstone and glass. Stiff grey friable laminated silty sandy CLAY. S grained. Occasional fibrous plant material. Stiff friable brown orange mottled grey lamina sandy CLAY. Sand is fine grained. Becoming damp brown orange from 1.60m bgl. Becoming damp brown orange from 1.60m bgl. Soft brown sandy CLAY. Sand is fine grained.	e gr m c	aine of 3 is f silty	d.		2
	3.50	HSV	HSV=140kPa				End of Pit at 3.50m					
Rema	rks: 1. Slight	groundwa	ater seepage at 1	 .60m bgl.						Ţ	; 	5 -
Stabili	ty: Partial o	collapse	from 1.60m to 1	.80m bg	I.					A	GS	

	FIELD		re,			Tı	rial Pit Log	TrialPit TP10 Sheet 1	9 of 1
Projec Name		IGHTON	ROAD	Proj C39	ject No.		Co-ords: 325272.00 - 365572.00 Level:	Date 20/08/20	
	on: NEW BR	IGHTON		000	,10		Dimensions	Scale	
							(m): Depth	1:25 Logge	
Client					1		3.50	DI	
Water Strike	Depth	nples & In Si Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.30	ES		0.30			Grass over brown grey slightly clayey slightly gra SAND with rootlets. Sand is fine grained. Gravel subrounded fine to medium of quartz. (TOPSOIL Firm brown orange mottled grey silty sandy CLA rootlets. Sand is fine grained. Locally laminated.	is)	
	1.00 1.00	D HSV	HSV=140kPa						1
	1.50 1.50	D HSV	HSV=140kPa	1.50			Firm purplish brown silty sandy CLAY. Sand is fir grained. Laminated.	e	2
	2.70 2.70	D HSV	HSV=140kPa						3
	3.50	HSV	HSV=140kPa	3.50			End of Pit at 3.50m		
									2
									5
	_{rks:} 1. No gr ty: Stable.		r encountered.					AC	ı S

ROWNE	TIELD		re,			T	rial Pit Log	TrialPit TP11 Sheet 1	0
Projec				Proj	ect No.		Co-ords: 325208.00 - 365597.00	Date	
lame		IGHTON	RUAD	C39	15		Level:	20/08/2	
.ocati	on: NEW BR	IGHTON,	MOLD				Dimensions (m):	Scale 1:25	
lient:	STEWAF		HOMES				Depth	Logge	
- 0	Sam	ples & In Si	itu Testing	5 //			3.00	DI	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.20	ES					Grass over brown slightly gravelly silty SAND. Sa to medium grained. Gravel is subrounded fine of (TOPSOIL)	nd is fine quartz.	
	0.50	D		0.30			Brown orange slightly clayey slightly gravelly SAI is fine to medium grained. Gravel is subrounded subangular fine to coarse of lithorelics of friable b orange slightly gravelly sandy clay. Low cobble co sandstone.	io rown	
	1.50	D							1
	1.50						Becoming brown red from 1.50m bgl. Gravel of siltstone pres	ent.	2
	2.30 2.40	HSV D	HSV=140kPa	2.30			Firm damp brown red slightly gravelly sandy CLA is medium grained. Gravel is subrounded fine of and coal. Low cobble content of siltstone and coa	siltstone	
	3.00	D		3.00			End of Pit at 3.00m		- 3
									4
			er encountered.						5
emai abili	2. Shear	r vanes no	ot possible due to	friability o	of clay.			AC	D GS

BROWN	FIELD		,			Tr	rial Pit Log	TrialPit TP11 Sheet 1	11
Projec	t NEW BRI	GHTON RO	DAD		ect No.		Co-ords: 325202.00 - 365564.00	Date	
Vame				C39	15			20/08/20 Scale	
.ocati	on: NEW BRI	GHTON, M	IOLD				Dimensions (m):	1:25	
Client	STEWAR	T MILNE H	OMES				Depth 2.80	Logge DI	ed .
л e	Sam	ples & In Situ	Testing	Depth	Level				
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.40	ES		0.30		er et er er tig fort och och och och och och och och och och och och och och och	Grass over brown silty SAND with rootlets. Sand grained. (TOPSOIL). Stiff friable brown orange slightly gravelly sandy Sand is fine grained. Gravel is rounded to subro to medium of siltstone, quartz and sandstone. Le content of sandstone. Becoming brown red from 0.80m bgl.	CLAY. unded fine	- 1
	1.60	D		1.60			Brown red slightly clayey slightly gravelly SAND fine to medium grained. Gravel is rounded to su fine of quartz and sandstone.	Sand is prounded	2
	2.80	D		2.80			End of Pit at 2.80m		
									3
lema	rks: 1. No gro 2. No she	oundwater e ear vanes p	encountered.	friability o	f clay.				5

В		William S 173-183 Northwic Cheshire CW9 5L	Witton ch, e,			Bo	reho	ole Log	Borehole N WS101 Sheet 1 of	1
	t Name:	-	RIGHT		Project No. C3915		Co-ords:	325084E - 365622N	Hole Type WS	
Locati	on:	NEW BI	RIGHT	ON, MOLD			Level:		Scale 1:30	
Client:		STEWA	RT MIL	NE HOMES			Dates:	23/08/2018	Logged By DI	у
Well	Water	Sample	e and li	n Situ Testing	Depth	Level	Legend	Stratum Description		\square
vven	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legenu			\vdash
		0.10 1.00 1.00	ES D S	N=31 (5,5/6,8,8,9)	0.10			Grass over light brown SAND with root fine to medium grained. (TOPSOIL) Stiff friable brown orange slightly grave Sand is fine to medium grained. Grave fine to medium of siltstone, sandstone	illy sandy CLAY. I is subrounded and charcoal.	1
		2.00 2.00	D	N=21 (4,5/5,5,5,6)				Cobble of sandstone at 2.00m bgl.		2
		2.80 3.00 3.00	D	N=24 (3,5/5,5,7,7)				Becoming slightly gravelly clayey fir sand between 2.80m and 3.00m bg	ne to medium I.	3
	×	3.90 4.00	D	N=14 (3,3/3,3,3,5)	E					4
		5.00		N=18 (3,3/4,4,4,6)	5.45			End of Borehole at 5.45m		5
Remar . Gro 2. Star	undwate	r encountered	at 4.00)m bgl. 1.00m plain, 4.00m	slotted.				AGS	6

	OWNFIELD	William S 173-183 Northwic Cheshire CW9 5LI	Witton ch, e,			Bo	reho	ole Log	Borehole N WS102 Sheet 1 of
	Name:	NEW B	RIGHT		oject No. 3915		Co-ords:	325125E - 365578N	Hole Type WS
ation	ו:	NEW B	RIGHT	ON, MOLD	5915		Level:		Scale 1:30
nt:		STEWA	RT MIL	NE HOMES			Dates:	23/08/2018	Logged By
V	Water	Sample	e and li	n Situ Testing	Depth	Level			
ell s	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Descriptio	
		0.20	ES		0.30			fine to medium grained. Gravel is sub subangular medium to coarse of silts sandstone. (TOPSOIL)	prounded to tone and
		0.40	D					Stiff friable brown orange slightly grav Sand is fine to medium grained. Grav to subangular fine to coarse of siltstor sandstone.	el is subrounded
		1.00		N=18 (4,3/5,4,5,4)					
		1.50	D					Becoming brown and less friable fi	rom 1.50m bgl.
		2.00		N=17 (3,2/3,4,5,5)				Becoming gravelly from 2.00m bgl. granite.	. Rare gravel of
		2.50	D						
		3.00		N=24 (4,6/6,6,6,6)				Becoming silty and firm from 2.90r	n bgl.
		3.50	D						
		4.00		N=20 (4,5/5,5,5,5)				Lens of medium dense very clayey sand between 4.00m and 4.90m b	r fine to medium gl.
		4.50	D						
		5.00		N=12 (2,2/3,3,3,3)				Lens of very clayey fine to medium 5.20m bgl.	n sand from
200					5.45			End of Borehole at 5.45n	1

Groundwater encountered at 4.00m bgl.
 Hole backfilled upon completion.

		173-183 Northwic Cheshire	⊧h, ∋,	ouse, Street,		Bo	reho	ole Log	Borehole No WS103	3
S	t Name:				Project No.		Co-ords:	325149E - 365615N	Sheet 1 of Hole Type	
-				(23915				WS Scale	
_ocati	on:	NEW BI	RIGHT	ON, MOLD			Level:		1:30 Logged By	
lient:		STEWA	RT MIL	NE HOMES			Dates:	23/08/2018	DI	у
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	n	
		Depth (m) 0.30 0.80 1.00 1.70 2.00 2.50 3.00 3.50 4.00 4.20	Type ES D D	Results N=10 (1,1/2,2,3,3) N=17 (2,2/3,4,5,5) N=27 (4,5/6,7,7,7) N=20 (4,4/4,4,7,5) N=22 (3,4/4,5,6,7)	(m)			Grass over brown slightly gravelly SA Sand is fine to medium grained. Grave to subrounded fine to medium of siltsticharcoal. (TOPSOIL) Firm brown orange slightly gravelly satis fine to coarse grained. Gravel is suit medium of siltstone and sandstone. Sorganic material. Becoming firm to stiff and brown fraction from the solution of siltstone and sandstone. Sorganic material no longer Cobble of sandstone at 2.80m bgl. Cobble of sandstone at 2.80m bgl. Firm to stiff purplish brown sandy CL4 grained.	ND with rootlets. el is subangular one and andy CLAY. Sand brounded fine to some fibrous om 0.70m bgl. present.	1 2 3 4 5
//////					5.45		<u>y 10 2002 (1999) 20</u>	End of Borehole at 5.45m		6

No groundwater encountered.
 Standpipe installed to 5.00m bgl; 1.00m plain, 4.00m slotted.

BROWNFIELD	William 9 173-183 Northwic Cheshire CW9 5L	Witton ch, e,			Bo	reho	ole Log	Borehole N WS104 Sheet 1 of	4
roject Name:		RIGHT		Project No. 3915		Co-ords:	325157E - 365580N	Hole Type WS	Э
ocation:	NEW BI	RIGHT	ON, MOLD			Level:		Scale 1:30	
lient:	STEWA	RT MIL	NE HOMES			Dates:	23/08/2018	Logged By DI	у
Vell Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
Suikes	Depth (m) 0.10	Type ES	Results	(11)	(11)		Grass over brown clayey SAND with r (TOPSOIL)	ootlets.	┢
	0.50	D		0.20			Firm to stiff brown orange slightly grav CLAY. Gravel is subrounded to suban coarse of siltstone and sandstone.	velly sandy gular fine to	-
	1.00		N=13 (2,3/3,3,3,4)				Becoming brown from 0.90m bgl. C charcoal present.	Gravel of	1
	1.50	D	N=19 (3,3/4,4,5,6)						2
	2.50	D							
	2.90		50 (25 for 135mm/50 for 205mm)) 2.90			Hole terminated at 2.90m bgl due t End of Borehole at 2.90m	o SPT refusal /	:
									6
marks No groundwa	ater encounter ed upon comp	red.						AGS	

B	ROWNFIEL	William S 173-183 Northwic Cheshire CW9 5L	Witton ch, e,			Bo	reho	ole Log	Borehole N WS10 Sheet 1 of	5
	t Name:		RIGHT		roject No. 3915		Co-ords:	325153E - 365532N	Hole Type WS	e
ocatio	on:	NEW BI	RIGHT	ON, MOLD	3915		Level:		Scale	
									1:30 Logged B	
lient:		STEWA	RT MIL	NE HOMES	1		Dates:	23/08/2018	DI	, —
Nell	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	Туре	Results	(,	(,		Grass over brown grey slightly gravelly Sand is fine to medium grained. Grave	/ clayey SAND.	╈
		0.20	ES		0.30			to medium siltstone. (TOPSOIL)		
								Stiff brown slightly gravelly sandy CLA subangular fine to medium of siltstone limestone and charcoal.	y. Gravel is , sandstone,	
		0.60	D							
S		1.00		N=13 (2,2/2,3,3,5)						
Y										
X										
X		4.50						Cobble of limestone at 1.40m bgl.		
X		1.50	D							
		2.00		N=22 (4,4/5,5,5,7)				Becoming gravelly from 2.00m bgl.		
S		2.50	D							
X										
X										
X		3.00		N=23 (4,5/6,5,6,6)						
X								Becoming grey brown from 3.10m b	ogl.	
X										
		3.50	D							
		4.00								
		4.00		N=21 (10,5/4,4,6,7)				Becoming firm from 4.00m bgl.		
X										
X										
X		4.50	D							
X										
		5.00		N=18 (3,5/5,4,4,5)						
					5.45			End of Borehole at 5.45m		1
					1					

No groundwater encountered.
 Hole backfilled upon completion.

	173-183 Northwic		Street,		Ro	roha		WS10	No. 6
ROWNFIEL	Cheshire	э,			DU		JIE LUY		
	D					Co-ords [.]	325188E - 365508N	Hole Type	
				3915		00 0100.			
on:	NEW BI	RIGHT	ON, MOLD			Level:		1:30	
	STEWA	RT MIL	NE HOMES			Dates:	23/08/2018	Logged B	3y
					· · ·			DI	Т
Water Strikes				Depth (m)	Level (m)	Legend	Stratum Descripti	on	
			Results				Grass over brown SAND with rootle	ts. (TOPSOIL)	+
	0.10	20		0.20			Firm to stiff brown orange slightly gr	avelly sandy	-
							CLAY. Sand is fine grained. Gravel i	s subrounded to	
	0.50	D					charcoal.		
						······································			
	1.00		N-10 (0 2/2 2 2 2)			······································			
	1.00		N-12 (2,3/3,3,3,3)			······································			
	1.20	D					Becoming brown from 1.20m bgl.		
						······································			
	2.00		N=14 (2,3/4,3,3,4)						
						······································			
						······································			
						· · · · · · · · · · · · · · · · · · ·			
	2.50	D				· · · · · · · · · · · · · · · · · · ·			
						······································			
						· · · · · · · · · · · · · · · · · · ·			
	3.00		N=30 (4,5/5,7,8,10)			······································			
						······································			
	2 50					······			
	3.50					······			
						······			
	4.00		N=22 (4,5/4,6,6,6)				Becoming brown grey from 4.00n	ı bgl.	
	4.30	D							
	5.00								
	5.00		N=23 (3,4/5,5,6,7)						
				5.45			End of Borehole at 5.45	m	1
	t Name: on: Water	Northwic Cheshing CW9 5L t Name: NEW BI Don: NEW BI STEWA Sample Water Strikes Depth (m) 0.10 0.10 1.00 1.20 2.00 2.00 2.50 3.00 3.50 4.00	Northwich, Cheshire, CW9 5LP t Name: NEW BRIGHTO on: NEW BRIGHTO Water Strewart MIL Strewart MIL Mater Strewart MIL 0.10 Strikes 0.10 Image: Strewart MIL 1.00 Image: Strewart MIL	Northwich, Cheshire, CW9 5LP Image: CW9 5LP Northwich, CM9 5LP Partial Composition of the composite of the composition of the composition of the com	Nerregion Project No. Ca915 NEW BRIGHTON, MOLD STEWART HOMES Strewart HOMES Vater Sample to Stu Testing Depth Mater 0.20 100 S Project No. C3915 Mater Sample to HOMES Depth Mater Sample to HOMES Depth (m) Mater Sample to HOMES Openhame Mater Sample to HOMES Openhame Mater Sample to HOMES Openhame Mater Sample to HOMES Depth (m) Jono DB N=12 (2.3/3.3.3.3) 1.20 D N=14 (2.3/4.3.3.4) Parametrize Advector Jacob D N=30 (4.5/5.7.8.10) Jacob D N=22 (4.5/4.6.6.6) Advector New Parametrize New Parametrize New Parametrize Jacob D N=22 (4.5/4.6.6.6) New Parametrize	Northwich, Chessing- Chessing- son: NEW BRIGHTON ROAD Project No. C3915 Image: Comparison of the transmer intervence	Northwich, Cheshine, CW9 5LP Project No. C315 Co-ords: It Name: NEW BRIGHTON ROAD Co-ords: C315 Level: STEWART MILNE HOMES Dates: Dates: Variation Dopth (m) Type Results Level (m) Variation 0.10 ES 0.20 Level (m) 0.50 D 0.20 Image: Calification (m) Image: Calification (m) 1.00 D N=12 (2.3/3.3.3.3) 0.20 Image: Calification (m) Image: Calification (m) 2.00 D N=14 (2.3/4.3.3.4) Image: Calification (m) Image: Calification (m) Image: Calification (m) 3.00 D N=30 (4.5/5.7.8.10) Image: Calification (m) Image: Calification (m) Image: Calification (m) 4.00 A N=22 (4.5/4.6.6.6) Image: Calification (m) Image: Calification (m) Image: Calification (m) Image: Calification (m) Image: Calification (m) Image: Calification (m) Image: Calification (m) Image: Calification (m) Image: Calification (m) Image: Calification (m) Image: Calification (m) Image:	Northwich, CW9 5LP Project No. C3915 Co-ords: 325188E - 365508N In: NEW BRIGHTON, MOLD Level:	Network, DWB 8LP Project No. (23915 Co-ords: 325188E - 365508N WB10 WB10 WB10 WB10 WB10 WB10 WB10 WB10

No groundwater encountered.
 Standpipe installed to 5.50m bgl; 1.50m plain, 4.00m slotted.

в	ROWNFIEL	William S 173-183 Northwic Cheshire CW9 5L	Witton ch, e,			Bo	reho	ole Log	Borehole No WS107 Sheet 1 of	7
	t Name:	D			roject No.		Co-ords:	325204E - 365528N	Hole Type	
catio	on:	NEW BI	RIGHT	ON, MOLD	3915		Level:		WS Scale	
ent:				NE HOMES			Dates:	24/08/2018	1:30 Logged By	y
,						<u> </u>	Dates.		DI	Т
ell	Water Strikes	Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	n	
		0.30	ES	N=4 (1,1/1,1,1,1)	0.50			Grass over brown SAND with rootlets medium grained. (TOPSOIL) Firm to stiff brown slightly gravelly sar is subrounded to subangular fine to co and sandstone. Lens of orange medium sand betw 0.65m bgl.	ndy CLAY. Gravel oarse of siltstone	
		1.50	D		1.40			Soft brown silty sandy CLAY. Sand is grained.	fine to medium	
		2.00		N=6 (1,2/1,2,1,2)				Becoming soft to firm from 2.00m b	ogl.	
		2.50	D							
		3.00		N=23 (13,11/9,4,5,5)	3.40			Medium dense brown slightly gravelly	r clavev siltv	
		3.60	D					SAND. Sand is fine to medium graine subangular fine to medium of coal and	d. Gravel is	
		4.00		N=14 (1,3/3,3,4,4)			× × ×			
		4.20	D		4.20			Firm brown slightly gravelly sandy CL to coarse grained. Gravel is subround siltstone.	AY. Sand is fine led fine of	
		5.00		N=26 (4,4/6,6,7,7)	5.45			End of Borehole at 5.45m		-
nar	ks									L

Groundwater encountered at 3.00m bgl.
 Hole backfilled upon completion.

В	ROWNFIEL	William S 173-183 Northwic Cheshire CW9 5L	Witton ch, e,			Во	reho	ole Log	Borehole N WS108 Sheet 1 of	8
	t Name:		RIGHT		Project No. C3915		Co-ords:	325265E - 365598N	Hole Type WS	;
Locatio	on:	NEW BI	RIGHT	ON, MOLD			Level:		Scale 1:30	
Client:		STEWA	RT MIL	NE HOMES			Dates:	24/08/2018	Logged By DI	у
Well	Water Strikes	_		n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	n	
		Depth (m) 0.30	Type ES	Results	0.30			MADE GROUND: Grass over light bro gravelly sand with rootlets. Sand is fir grained. Gravel is subrounded fine to sandstone. MADE GROUND: Firm brown slightly clay. Gravel is subangular to angular glass, pottery, siltstone and sandstone	ne to medium medium of gravelly sandy fine to medium of	
		1.00 1.00 1.20	ES	N=0 (0,0/0,0,0,0)	1.10			MADE GROUND: Soft dark grey sligh clay. Gravel is angular medium to coa Slight organic odour.	ntly gravelly silty rse of pottery.	1
		2.00 2.10	D	N=6 (1,1/1,1,2,2)	2.00		x x x x x x x x x x	Soft to firm purplish brown silty sandy fine grained.	CLAY. Sand is	2
		3.00 3.30	D	N=10 (1,2/2,2,3,3)						3 -
		4.00 4.50	D	N=13 (4,3/2,3,4,4)	4.00			Medium dense brown silty clayey SAN grained.	ND. Sand is fine	4
		5.00		N=21 (3,3/5,5,5,6)	5.00			Firm to stiff brown sandy CLAY. Sand grained. End of Borehole at 5.45m		5
Remar				dwater encountere						6

1. Hole damp from 3.50m bgl, groundwater encountered at 4.00m bgl. 2 Standpipe installed to 5.00m bgl; 1.00m plain, 4.00m slotted.

BF	ROWNFIELD DUITIONS LT	William S 173-183 Northwic Cheshire CW9 5L	Witton ch, e,			Во	reho	ole Log	Borehole No WS109 Sheet 1 of 2
	t Name:		RIGHT		Project No. C3915		Co-ords:	325290E - 365517N	Hole Type WS
ocatic	on:	NEW B	RIGHT	ON, MOLD			Level:		Scale 1:30
ent:		STEWA	RT MIL	NE HOMES			Dates:	24/08/2018	Logged By
	Water	Sample	e and li	n Situ Testing	Depth	Level			DI
/ell	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Descriptio	
		0.20	ES		0.10			MADE GROUND: Grass over brown rootlets. Sand is fine to medium grain MADE GROUND: Firm brown orange sandy clay. Gravel is subrounded fine siltstone, quartz and sandstone.	ed. slightly gravelly
		0.70	D		0.60			MADE GROUND: Grey gravel. Grave fine to medium of limestone. Piece of	el is subangular plastic.
		1.00		N=9 (2,1/2,2,2,3)	1.00			Soft to firm brown orange silty sandy fine grained.	
		1.30	D					Fibrous organic matter present to 2	2.00m bgl.
		2.00		N=5 (2,1/1,1,1,2)				Becoming soft and brown from 2.0	0m bgl.
		2.30	D						
		3.00		N=4 (1,1/1,1,1,1)					
		3.50	D						
		4.00		N=5 (1,1/1,1,1,2)					
		4.50	D						
		5.00		N=23 (4,4/5,6,5,7)	5.00			Medium dense brown SAND. Sand is grained.	fine to medium
*//					5.45		<u>nuti iriai</u>	End of Borehole at 5.45n	n
marl									

Groundwater encountered at 2.00m bgl.
 Hole backfilled upon completion.

		William 9 173-183 Northwic	Witton			Ro	roha	ole Log	Borehole N WS110	
в	ROWNFIELD	Cheshire CW9.5U	e,			DU		JIE LUY	Sheet 1 of	
	t Name:	D			Project No. C3915		Co-ords:	325228E - 365525N	Hole Type WS	
ocatio	on:	NEW BI	RIGHT	DN, MOLD	55915		Level:		Scale	
lient:				NE HOMES			Dates:	24/08/2018	1:30 Logged By	у
							Dates.	24/00/2010	DI	Г
Nell	Water Strikes	Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	n	
		0.10	ES D		0.20			Grass over slightly gravelly clayey SA Sand is fine to medium grained. Grav to subangular fine to medium of siltsto Firm to stiff brown grey sandy silty CL grained.	el is subrounded one. (TOPSOIL)	
****		1.00	D	N=10 (2,2/2,3,2,3)				Becoming soft to firm brown orange	e from 1.10m	
		1.30	D							
		2.00	D	N=8 (1,1/2,2,2,2)	2.00			Firm purplish brown sandy silty CLAY. grained.	. Sand is fine	-
		3.00		N=11 (2,2/2,3,3,3)						
		3.50	D							
	▼	4.00		N=16 (2,2/3,3,4,6)						
		5.00		N=33 (6,6/6,8,10,9)	5.00			Brown slightly gravelly sandy CLAY. S coarse. Gravel is subangular fine to m siltstone and quartz.	Sand is fine to redium of	
					5.45			End of Borehole at 5.45m	1	-
										1

Groundwater encountered at 4.00m bgl.
 Standpipe installed to 5.00m bgl; 1.00m plain, 4.00m slotted.

BR		William S 173-183 Northwic Cheshire CW9 5L	Witton h, e,			Во	reho	ole Log	Borehole N WS11 Sheet 1 of	1
	Name:		RIGHT		oject No. 3915		Co-ords:	325224E - 365558N	Hole Type WS	е
catio	n:	NEW BI	RIGHT	ON, MOLD	5515		Level:		Scale 1:30	
ent:		STEWA	RT MIL	NE HOMES			Dates:	24/08/2018	Logged B	y
Т	Water	Sample	and li	n Situ Testing	Depth	Level			DI	Т
əll	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Descriptior		
Ø					0.20			Grass over firm brown sandy CLAY wi (TOPSOIL)		
		0.30	ES				<	Grey brown orange silty sandy CLAY. grained.	Sand is fine	
					0.40		××	Firm brown orange silty sandy CLAY. grained.	Sand is fine	
ÿ		0.70	D				××			
Ø										
		1.00		N=13 (2,3/3,3,3,4)			×	Rootlets present to 1.00m bgl.		
S										
Ø							× × ×			
Ø		1.50	D							
							××××××			
ÿ		2.00		N=8 (1,1/2,2,2,2)	2.00		××			
Ø		2.00		N=0 (1,1/2,2,2,2)	2.00			Firm purplish brown silty sandy CLAY. grained.		
Ø							× ×	Becoming slightly gravelly from 2.1 is subrounded to subangular fine of	f siltstone and	
								charcoal. Clay becoming laminated	Ι.	
y		2.70	D				×			
Ø							× × ~			
Ø		3.00		N=33 (4,4/5,6,15,7)			× × ×			
ÿ							××-			
Ø		3.50	D				× × ×			
Ø										
							× ×			
ÿ	_	4.00 4.00	D	N=15 (4,3/3,3,4,5)				Sand becoming fine to coarse from	4.00m bgl.	
Ø							×× ×××××			
							× × ~	Becoming brown slightly clayey fine	e to medium	
							× × ×	sand from 4.40m to 4.80m bgl.		
Ø										
Ø		5.00		N=16 (4,3/3,5,4,4)			××- ××××××××××××			
							- × ~ × ×			
×//					5.45			End of Borehole at 5.45m		1

Groundwater encountered from 4.00m to 4.80m bgl.
 Hole backfilled upon completion.

BR	ROWNFIELD DUTIONS LT	William 9 173-183 Northwic Cheshire CW9 5L	Witton ch, e,			Во	reho	ole Log	Borehole N WS112 Sheet 1 of	2
	Name:		RIGHT		roject No. 3915		Co-ords:	325232E - 365595N	Hole Type WS	
atio	on:	NEW BI	RIGHT	ON, MOLD			Level:		Scale 1:30	
nt:		STEWA	RT MIL	NE HOMES			Dates:	24/08/2018	Logged By DI	у
əll	Water	Sample	e and l	n Situ Testing	Depth	Level	Legend	Stratum Descriptior	1	Τ
	Strikes	Depth (m)	Туре	Results	(m)	(m)		Grass over brown slightly gravelly SA	ND with rootlets.	╈
		0.20	ES		0.30			Sand is fine to medium grained. Grave fine to medium of quartz. (TOPSOIL)		
		0.40	D		0.00		××- 	Firm to stiff brown silty sandy CLAY. S grained.	and is fine	
							× × ×			
Ø							××			
		1.00		N=12 (1,2/3,3,3,3)				Becoming soft to firm from 1.00m b	gl.	
ÿ							× × ×			
		1.50	D				××			
		1.00					×			
Ø							××			
		2.00		N=8 (1,1/2,2,2,2)			× ~ × ×	Becoming brown grey from 1.90m l	bgl.	
							×—× ××			
Ø		0.50					× × ×			
		2.50	D				××			
							×—× ××			
Ø		3.00		N=13 (2,3/3,3,3,4)			× × ×			
							×× × × -×			
ÿ		0.50					^× ××			
		3.50	D		0.70		<u> </u>			
ÿ		3.80	D		3.70			Medium dense brown slightly gravelly fine to coarse grained. Gravel is subro	SAND. Sand is ounded fine of	
		4.00		N=23 (4,4/6,6,7,4)				siltstone, quartz and limestone.		
		4.50								
		4.50	D							
ÿ					1.00					
Ì		5.00 5.00	D	N=17 (3,3/4,4,4,5)	4.90			Firm brown slightly gravelly sandy CL to medium grained. Gravel is subroun	AY. Sand is fine ded fine of	1
		5.00		N-17 (3,3/4,4,4,5)				siltstone and quartz.		
X					5.45			End of Borehole at 5.45m		
								בוום טו סטופווטופ או 5.45m		
										1

Groundwater encountered at 4.00m bgl.
 Hole backfilled upon completion.

BR	OWNFIELD	William S 173-183 Northwic Cheshire CW9 5L	Witton \$ h, e,			Bo	oreho	ole Log	Borehole No. RO101 Sheet 1 of 1
Project	Name:	NEW BI	RIGHTO	ON ROAD	Project No. C3915		Co-ords:	325250E - 365591N	Hole Type RO
ocatio.	n:	NEW B	RIGHTO	DN, MOLD			Level:		Scale 1:200
lient:		STEWA	RT MIL	NE HOMES			Dates:	20/08/2018	Logged By DRILLER
	Water Strikes	Sample Depth (m)	e and Ir	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descript	ion
					13.70 15.00 15.40 16.40			GRAVEL. Grey SANDSTONE. Dark SHALE/COAL. Grey SANDSTONE with MUDSTO	NE bands.
					35.90 36.50			Dark SHALE/COAL. Grey MUDSTONE.	3 3 3 3 3 3
					40.00			End of Developer 10	3
emark					+0.00			End of Borehole at 40.0	90m 4

No loss of flush or dropping of rods observed.
 No gases detected.
 Hole backfilled upon completion.

E		William S 173-183 Northwic Cheshire CW9 5Ll	Witton S ch, e,			Bo	reho	ole Log	Borehole N RO10 Sheet 1 of	2 f 1
Projec	t Name:	NEW B	RIGHTO	N ROAD	Project No. C3915		Co-ords:	325277E - 365574N	Hole Typ RO	e
Locati	on:	NEW BI	RIGHTO	N, MOLD	·		Level:		Scale 1:200	
Client:		STEWA	RT MIL	NE HOMES			Dates:	20/08/2018	Logged E DRILLEF	
Well	Water	Sample	e and In	Situ Testing	Depth	Level	Legend	Stratum Descrip	I	
	Strikes	Depth (m)	Туре	Results	(m)	(m)		CLAY.		
							E- <u>-</u>			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
							2-2-2-			2
										4
										5
										6
							E			7
							E-E-E-			8
							E-E-E-			9
							E-I-I -			10
							<u> </u>			11
										12
					13.50			GRAVEL.		14
					14.70 15.20		••••••	Grey SANDSTONE. Dark SHALE/COAL.		15
					16.00			Dark SHALE/COAL. Grey SANDSTONE with MUDSTO	NE bands.	16
	1									17
										18
										19
										20
							:::::::			21
										22
							:::::::			24
										25
										26
							· · · · · · · · · · · · · · · · · · ·			27
										28
	1						::::::			29
										30
										31
										32
										34
							· · · · · · · · · · · · · · · · · · ·			35
					36.40		· · · · · · · · · · · · · · · · · · ·			36
					36.40			Dark SHALE/COAL.		37
					07.40			Grey MUDSTONE.		38
										39
					40.00			End of Borehole at 40	.00m	40

BF	ROWNFIELD	173-183 Northwic Cheshire	ch, ∋,	ouse, Street,		Во	reho	ole Log	Borehole No RO103 Sheet 1 of 1	
Project	t Name:	NEW BI	RIGHTC	N ROAD	Project No. C3915		Co-ords:	325244E - 365552N	Hole Type RO	
Locatic	on:	NEW BI	RIGHTC	N, MOLD			Level:		Scale 1:200	
Client:		STEWA	RT MILI	NE HOMES			Dates:	20/08/2018	Logged By DRILLER	,
Well	Water Strikes	Sample Depth (m)	e and In Type	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descrip	tion	
					15.00 17.00 18.00 18.80 30.00			GRAVEL. Grey MUDSTONE. Dark SHALE/COAL. Grey MUDSTONE with SANDSTO End of Borehole at 30.	NE bands.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	ROWNFIELD		Witton S ch, e, P	Street,	Project No.	Во		ole Log	Borehole N RO104 Sheet 1 of Hole Type	4 1
Project	t Name:	NEW BI	RIGHTO	ON ROAD	C3915		Co-ords:	325243E - 365513N	RO	
Locatio	on:	NEW B	RIGHTO	ON, MOLD			Level:		1:200	
Client:		STEWA	RT MIL	NE HOMES			Dates:	20/08/2018	Logged B DRILLEF	
Well	Water Strikes	Sample Depth (m)	e and Ir	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
					15.40 17.80 22.60 23.60 30.00			CLAY. GRAVEL. Grey/dark grey MUDSTONE. Dark SHALE/COAL. Grey MUDSTONE/SANDSTONE. End of Borehole at 30.00m		1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
Remari 1. No le		ish or dropping	g of rod	s observed.						

BROWNFIELD	William S 173-183 Northwic Cheshire CW9 5LI	Witton S h, e,			Во	reho	ole Log	Borehole No RO105 Sheet 1 of 2	; 1
⊃roject Name:	NEW B	RIGHTC	ON ROAD	Project No. C3915		Co-ords:	325292E - 365510N	Hole Type RO	
_ocation:	NEW B	RIGHTC	DN, MOLD			Level:		Scale 1:200	
Client:	STEWA	RT MIL	NE HOMES			Dates:	20/08/2018	Logged By DRILLER	
Well Water Strikes	Sample Depth (m)	e and In Type	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
				15.00 15.20 22.20 23.20 30.00			CLAY. GRAVEL. Grey/dark grey MUDSTONE. Dark SHALE/COAL. Grey MUDSTONE with SANDSTONE		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

BI	ROWNFIELD	William S 173-183 Northwic Cheshire CW9 5LI	Witton h, e,			Bo	oreho	ole Log	Borehole N RO10 Sheet 1 of	6 1
Project	t Name:	NEW B	RIGHT	ON ROAD	Project No. C3915		Co-ords:	325215E - 365618N	Hole Type RO	е
ocatio	on:	NEW B	RIGHT	ON, MOLD			Level:		Scale 1:200	
lient:		STEWA	RT MIL	NE HOMES			Dates:	21/08/2018	Logged B DRILLEF	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descript	ion	
	Ounces	Depth (m)	Туре	Results				CLAY.		
										1
							L- <u>-</u>			2
							L- <u>-</u>			3
							<u></u> -			4
							<u> </u>			5
							<u> </u>			6
							<u></u> -			7
							<u></u> -			8
							<u></u> -			9
							<u></u> -			10
							<u></u>			11
							<u></u> -			12
										13
							<u></u> -			14
					15.00			SAND and GRAVEL.		15
										16
										17
					18.00			Grey MUDSTONE.		18
					19.00			Dark grey SHALE/COAL.		19
					20.00			Grey SANDSTONE with MUDSTON	NE bands	20
								GIEV SANDSTONE WITH MODSTON	NE Darius.	
										22
										23
										24
										2-
							::::::			20
										21
							::::::			28
										29
										30
					31.30			Dark grey SHALE/MUDSTONE.		31
					32.00			Grey MUDSTONE.		32
										33
					34.00			Dark grey SHALE/COAL.		34
					35.00			Grey MUDSTONE.		35
										36
										37
										38
										21 22 23 24 25 26 27 28 29 30 31 - 32 33 - 34 - 35 36 37 38 39 - 40
						1				1

No loss of flush or dropping of rods observed.
 No gases detected.
 Hole backfilled upon completion.

BROWNFIELD SOLUTIONS LTD	173-183 Northwic Cheshire	sh, ∋,			Во	reho	ole Log	Borehole No RO107 Sheet 1 of	1
Project Name:	NEW BF	RIGHTO	ON ROAD	Project No. C3915		Co-ords:	325203E - 365586N	Hole Type RO	•
ocation:	NEW BF	RIGHTO	DN, MOLD			Level:		Scale 1:200	
lient:	STEWA	RT MIL	NE HOMES			Dates:	21/08/2018	Logged By DRILLER	
Well Water Strikes	Sample Depth (m)	e and Ir Type	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	on	
				13.50 19.30 20.40 28.70 30.00			CLAY. Grey MUDSTONE. COAL. Grey MUDSTONE/SANDSTONE. Dark grey MUDSTONE. End of Borehole at 30.00	Dm	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

B	ROWNFIEL	William S 173-183 Northwic Cheshire CW9 5L	Witton S ch, e,	ouse, Street,		Bo	reho	ole Log	Borehole N RO108 Sheet 1 of	3
	t Name:		RIGHTC	N ROAD	Project No. C3915		Co-ords:	325200E - 365542N	Hole Type RO	
Locatio	on:	NEW BI	RIGHTC	N, MOLD			Level:		Scale 1:200	
Client:		STEWA	RT MIL	NE HOMES			Dates:	21/08/2018	Logged By DRILLER	
Well	Water Strikes	Sample Depth (m)	e and In Type	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descrip	tion	
					14.00 17.50 18.50 30.00			CLAY. Grey MUDSTONE. Dark SHALE/COAL. Grey MUDSTONE with SANDSTC		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

3. Hole backfilled upon completion.

BROWNE	173-183 Northwie Cheshir	e,			Во	reho	ole Log	Borehole N RO109 Sheet 1 of) 1
Project Narr	e: NEW B	RIGHTC	ON ROAD	Project No. C3915		Co-ords:	325202E - 365503N	Hole Type RO	9
Location:	NEW B	RIGHTC	DN, MOLD			Level:		Scale 1:200	
Client:	STEWA	ART MIL	NE HOMES			Dates:	21/08/2018	Logged By DRILLER	
Well Wate			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descrip	tion	
	Depth (m)	Туре	Results	12.00 13.40 14.40			CLAY. Grey MUDSTONE. Dark SHALE/COAL. Grey MUDSTONE.		1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 7 - 8 - 10 - 11 - 11 - 11 - 11 - 11 - 11
				19.10 26.60 27.00 30.00			Grey MUDSTONE with SANDSTO Dark SHALE with coal traces. Grey MUDSTONE. End of Borehole at 30		19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Remarks									30 37 38 39 40

	BROWNFIEL SOLUTIONS LT	William S 173-183 Northwic Cheshire CW9 5LF	Witton : h, e,			Во	reho	ole Log	Borehole No. RO110 Sheet 1 of 1	
Proje	ct Name:	NEW BF	RIGHT	ON ROAD	Project No. C3915		Co-ords:	325162E - 365605N	Hole Type RO	
Locat	ion:	NEW BF	RIGHT	ON, MOLD			Level:		Scale 1:200	
Client	:	STEWA	RT MIL	NE HOMES			Dates:	21/08/2018	Logged By DRILLER	
Well	Water Strikes	Sample Depth (m)	and Ir	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
					12.00 20.20 21.00 22.80 23.70 25.20 26.00 30.00			CLAY. Grey MUDSTONE/SANDSTONE. Dark SHALE with coal traces. Grey MUDSTONE. Dark SHALE/COAL. Grey MUDSTONE. Dark SHALE with coal traces. Grey MUDSTONE. Dark SHALE with coal traces. Grey MUDSTONE. End of Borehole at 30.00m	· · · · · · · · · · · · · · · · · · ·	1 - 2 2 - 3 3 - 4 5 - 6 5 - 6 7 - 6 7 - 7 10 - 7 11 - 7 12 - 7 13 - 7 14 - 7 15 - 7 16 - 7 17 - 7 18 - 7 21 - 7 21 - 7 22 - 7 22 - 7 22 - 7 23 - 7 22 - 7 23 - 7 24 - 7 22 - 7 23 - 7 24 - 7 23 - 7 24 - 7 22 - 7 23 - 7 24 - 7 23 - 7 31 - 7 32 - 7 32 - 7 33 - 33 - 7 33 - 33 - 33 33 - 33 - 33 - 33 33 - 33 - 33 - 33 33 - 33

BI	ROWNFIELD	173-183 Northwic Cheshire	⊧h, ∍,	Street,	Designed No.	Bo	reho	ole Log	Borehole No. RO111 Sheet 1 of 1
Project	Name:	NEW B	RIGHTO	ON ROAD	Project No. C3915		Co-ords:	325141E - 365563N	Hole Type RO
.ocatio	on:	NEW B	RIGHTO	ON, MOLD			Level:		Scale 1:200
lient:		STEWA	RT MIL	NE HOMES			Dates:	21/08/2018	Logged By DRILLER
Nell	Water Strikes	Sample Depth (m)	and Ir	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	
			Type	Results	14.00			CLAY. Grey MUDSTONE/SANDSTONE.	
					35.00 36.20			Dark SHALE/COAL. Grey MUDSTONE.	3 3
					40.00			End of Borehole at 40.00m	3 3

E	BROWNFIELD	William S 173-183 Northwic Cheshire CW9 5LI	Witton S h, e,			Во	reho	ole Log	Borehole No. RO112 Sheet 1 of 1	
Projec	ct Name:	NEW B	RIGHTC	ON ROAD	Project No. C3915		Co-ords:	325113E - 365552N	Hole Type RO	
Locati	ion:	NEW B	RIGHTC	ON, MOLD			Level:		Scale 1:200	
Client		STEWA	RT MIL	NE HOMES			Dates:	22/08/2018	Logged By DRILLER	
Well	Water Strikes			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	n	
		Depth (m)	Туре	Results	12.70 13.20 14.20 15.00 15.70 20.60 21.00			CLAY. Grey MUDSTONE. Dark SHALE/COAL. Grey MUDSTONE. Dark SHALE/COAL. Grey MUDSTONE. Dark SHALE/COAL. Grey MUDSTONE.	2 3 4 5 6 7 8 9 10 11 12 12 12 14 15 16 17 18 18 19 10 11 12 12 12 12 12 12 12 12 12	2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 -
					27.80 28.80 30.00			Dark SHALE/COAL. Grey MUDSTONE. End of Borehole at 30.00n	22 23 24 24 24 24 26 27 26 27 26 27 26 27 30 33 34 34 34 34 34 34 34 34 34	1 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 37 - 38 - 39 - 30 - 37 - 38 - 39 - 30 -

APPENDIX B Chemical Testing Results

Dylan Ingman Brownfield Solutions Ltd William Smith House 173 - 183 Witton Street Northwich Cheshire CW9 5LP

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: d.ingman@brownfield-solutions.co.uk

Analytical Report Number : 18-98450

Project / Site name:	New Brighton, Mold	Samples received on:	30/08/2018
Your job number:	C3915	Samples instructed on:	30/08/2018
Your order number:	C3915-5881-DI	Analysis completed by:	06/09/2018
Report Issue Number:	1	Report issued on:	06/09/2018
Samples Analysed:	20 soil samples		

Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: New Brighton, Mold

Sample Katerance Wision <	Lab Sample Number				1035649	1035650	1035651	1035652	1035653
Sample Number Numes suggled None Suggle									
Depth (m) 0.30 0.20 0.50 0.10 0.20 Date Sampled 2408/2018 2908/2018 2908/2018 2908/2018 2008/2018 2									None Supplied
Date Sampled 24/08/2018 24/08/2018 23/08	Depth (m)								
Time Taken None Supplied None Suppli						24/08/2018			20/08/2018
Analytical Parameter (Soil Analysis) G g g g g g g g g g g g g g g g g g g g									None Supplied
Some Content Sig 0.1 NOME < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 $< $	Analytical Parameter	Units	Limit of detection	Accreditatio Status					
ModeSure NVA NONE 19 10 7.8 10 9.4 Total mass of sample received kg 0.001 NONE 0.89 0.95 0.97 0.96 1.0 Asbeetos in Soil Type N/A ISO1 Tozs Not-detected - - Bri-Automated pt Lines N/A MCERTS 8.3 6.3 6.6 6.2 6.3 Fee Conde marking 1 MCERTS 8.3 6.3 6.6 6.2 6.3 Sectionies Solid SOI Hibr extraction (2:1 Leachate galvalent) marking 1 MCERTS 2.1 (2.1 0.13 0.020 0.017 0.013 Vester Soluble SOI Hibr extraction (2:1 Leachate galvalent) marking 0.1 MCERTS 3.2 1.2 0.7 3.5 4.6 Calad Organic Carbon (TOC) % 0.1 MCERTS 3.2 1.2 0.7 3.5 4.6 Calad Draphic Carbon (TOC) % 0.1 MSCERTS 3.2 1.2 <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>				_					
		%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Absentson Soli Type N/A ISO 17025 Not-detected . General Inornanics pt1-ubros N/A MCERTS 8.3 6.3 6.6 6.2 6.3 Pat-Automated pn0/bg 1 MCERTS 8.3 6.3 6.6 6.2 6.3 Pate Condig nm0/bg 1 MCERTS 0.012 0.013 0.0020 0.017 0.013 Water Soluble SO4 16hr extraction (2:1 Leachate g_0 0.00125 MCERTS 0.21 0.013 0.020 0.017 0.013 Water Soluble SO4 16hr extraction (2:1 Leachate g_0 0.00125 MCERTS 3.2 1.2 0.7 3.5 4.6 Organic Mather % 0.1 MCERTS 3.2 1.2 0.7 3.5 4.6 Calad Chapito (TOC) % 0.1 MCERTS 3.2 1.2 0.7 3.5 4.6 Calad Naphtolis (Sum of 1- and 2- Naphthol) mgNg 0.1 ISO 17025 0.10 <0.10	Moisture Content	%	N/A	NONE	19	10	7.8	10	9.4
General Inorganics PH Units N/A MCERTS 8.3 6.3 6.6 6.2 6.3 Pite Conside mg/kg 1 MCERTS 8.3 6.3 6.6 6.2 6.3 Water Soluble SO416br extraction (2:1 Leachate mg/kg 0 0.00215 MCERTS 0.021 0.013 0.020 0.017 0.013 Water Soluble SO416br extraction (2:1 Leachate mg/l 1.25 MCERTS 3.2 1.2 0.7 3.5 4.6 Total Organic Carbon (TOC) % 0.1 MCERTS 3.2 1.2 0.7 3.5 4.6 Total Organic Carbon (TOC) % 0.1 MCERTS 3.2 1.2 0.7 3.5 4.6 Cateshol mg/kg 0.1 ISO 17025 < 0.10	Total mass of sample received	kg	0.001	NONE	0.89	0.95	0.97	0.96	1.0
ph 1-Junnated ph Vinis N/A MCERTS 8.3 6.3 6.6 6.2 6.3 Tree Candide mg/qt 1 MCERTS <1	Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-	-
ph 1-Junnated ph Vinis N/A MCERTS 8.3 6.3 6.6 6.2 6.3 Tree Candide mg/qt 1 MCERTS <1	Comment Terrorenting								
Free Canade maying 1 MCRTS < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1			NI/A	MCEDITC	0.2	6.2	6.6	6.2	6.2
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) g/l 0.00125 MCERTS 0.021 0.013 0.020 0.017 0.013 Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 21.2 13.0 19.6 16.5 12.9 Organic Carbon (TOC) % 0.1 MCERTS 3.2 1.2 0.7 3.5 4.6 Total Organic Carbon (TOC) % 0.1 MCERTS -									
Equivalent) ol. O.021 0.013 0.020 0.017 0.013 Equivalent) mg/l 1.25 MCRETS 0.21 13.0 19.6 16.5 12.9 Equivalent) % 0.11 MCRETS 3.2 1.2 0.7 3.5 4.6 Total Organic Carbon (TOC) % 0.11 MCRETS 3.2 1.2 0.7 3.5 4.6 Total Organic Carbon (TOC) % 0.1 MCRETS -		mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Equivalent) mg/l 1.25 MCRETS 2.1.2 13.0 19.6 16.5 12.9 Organic Karbon (TOC) % 0.1 MCRETS 3.2 1.2 0.7 3.5 4.6 Total Organic Carbon (TOC) % 0.1 MCRETS - <td< td=""><td>Equivalent)</td><td>g/l</td><td>0.00125</td><td>MCERTS</td><td>0.021</td><td>0.013</td><td>0.020</td><td>0.017</td><td>0.013</td></td<>	Equivalent)	g/l	0.00125	MCERTS	0.021	0.013	0.020	0.017	0.013
Organic Matter % 0.1 MCERTS 3.2 1.2 0.7 3.5 4.6 Total Organic Carbon (TOC) % 0.1 MCERTS - <td></td> <td></td> <td>1.25</td> <td>MCEDIC</td> <td>21.2</td> <td>12.0</td> <td>10.0</td> <td>16 5</td> <td>12.0</td>			1.25	MCEDIC	21.2	12.0	10.0	16 5	12.0
Total Organic Carbon (TOC) % 0.1 MCERTS - <									
Phenols by HPLC Catechol mg/kg 0.1 ISO 17025 < 0.10									
Catechol mg/kg 0.1 ISO 17025 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.1		70	0.1	PICERTS	-	-	-	-	-
Catechol mg/kg 0.1 ISO 17025 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.1	Phenols by HPLC								
Resorcinol mg/kg 0.1 ISO 17025 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 Cresols (or, m-, p-) mg/kg 0.3 ISO 17025 < 0.20		ma/ka	0.1	ISO 17025	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Cresols (or, mr, p) mg/kg 0.3 ISO 17025 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 Total Naphthols (sum of 1- and 2- Naphthol) mg/kg 0.2 ISO 17025 < 0.20									
Total Naphthols (sum of 1- and 2- Naphthol) mg/kg 0.2 ISO 17025 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10									
2-Isopropylphenol mg/kg 0.1 ISO 17025 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10									
Phenol mg/kg 0.1 ISO 17025 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Trimethylphenol (2,3,5-) mg/kg 0.1 ISO 17025 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10									
Total Xylenols and Ethylphenols mg/kg 0.3 ISO 17025 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30<									
Total Phenols Total Phenols (HPLC) mg/kg 1.3 ISO 17025 < 1.3									
Total Phenols (HPLC) mg/kg 1.3 ISO 17025 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3 < 1.3			0.0	100 17020		. 0100			
Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05		ma/ka	1.3	ISO 17025	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.0			110	100 1/020	. 10	. 110	. 10	. 10	. 10
Acenaphthylene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Acenaphthene mg/kg 0.05 MCERTS < 0.05			0.05		0.05	0.05	0.05	0.05	. 0.05
Acenaphthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.									
Fluorene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Phenanthrene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.									
Anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
Fluoranthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.									
Pyrene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Benzo(a)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Chrysene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Benzo(b)fluoranthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
Benzo(k)fluoranthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05		5, 5							
Benzo(a)pyrene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <									
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
Benzo(ghi)perylene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Total PAH									
	Benzo(gni)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Speciated Total FPA-16 PAHs mo/kg 0.8 MCFRTS < 0.80 < 0.80 < 0.80 < 0.80 < 0.80	Total PAH								
	Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80

Project / Site name: New Brighton, Mold

Lab Sample Number				1035649	1035650	1035651	1035652	1035653
Sample Reference				WS108	WS109	TP103	WS106	TP110
Sample Number				None Supplied				
Depth (m)				0.30	0.20	0.50	0.10	0.20
Date Sampled				24/08/2018	24/08/2018	20/08/2018	23/08/2018	20/08/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-		-					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	12	6.3	6.5	9.0
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	20	27	15	19	17
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	20	28	16	19	18
Copper (aqua regia extractable)	mg/kg	1	MCERTS	34	20	18	11	15
Lead (aqua regia extractable)	mg/kg	1	MCERTS	140	23	18	56	46
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.6	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	27	16	11	13
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	53	46	32	40

Project / Site name: New Brighton, Mold

Lab Sample Number				1035654	1035655	1035656	1035657	1035658
Sample Reference				TP101	WS111	TP104	WS112	WS102
Sample Number				None Supplied				
Depth (m)				0.10	0.30	0.20	0.20	0.20
Date Sampled				20/08/2018	24/08/2018	20/08/2018	24/08/2018	23/08/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
			on					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	9.6	12	13	8.0	9.0
Total mass of sample received	kg	0.001	NONE	0.82	0.85	0.93	0.90	0.79
Ashashas in Call		N1/A	100 17005	r	n	r	n	n
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	-	-
General Inorganics		N.		-	r	-	ſ	1
pH - Automated	pH Units	N/A	MCERTS	6.1	8.6	7.6	7.6	6.5
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0093	0.010	0.047	0.014	0.0097
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	9.3	10.3	46.9	14.2	9.7
Organic Matter	%	0.1	MCERTS	5.5	0.9	3.0	2.1	6.8
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-	-	-	-
Phenols by HPLC								
Catechol	mg/kg	0.1	ISO 17025	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Resorcinol	mg/kg	0.1	ISO 17025	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Cresols (o-, m-, p-)	mg/kg	0.3	ISO 17025	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Total Naphthols (sum of 1- and 2- Naphthol)	mg/kg	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
2-Isopropylphenol	mg/kg	0.1	ISO 17025	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenol	mg/kg	0.1	ISO 17025	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Trimethylphenol (2,3,5-)	mg/kg	0.1	ISO 17025	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Xylenols and Ethylphenols	mg/kg	0.3	ISO 17025	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Total Phenols								
Total Phenols (HPLC)	mg/kg	1.3	ISO 17025	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
	mg/kg	0.0	HIGEN I J	× 0.00	< 0.00	× 0.00	< 0.00	~ 0.00

Project / Site name: New Brighton, Mold Your Order No: C3915-5881-DI

Lab Sample Number				1035654	1035655	1035656	1035657	1035658
Sample Reference				TP101	WS111	TP104	WS112	WS102
Sample Number				None Supplied				
Depth (m)				0.10	0.30	0.20	0.20	0.20
Date Sampled				20/08/2018	24/08/2018	20/08/2018	24/08/2018	23/08/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	5.3	4.7	3.7	14
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	0.5
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	16	24	12	19	17
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	17	24	12	19	18
Copper (aqua regia extractable)	mg/kg	1	MCERTS	25	22	10	19	32
Lead (aqua regia extractable)	mg/kg	1	MCERTS	130	15	42	30	140
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	15	36	7.1	19	18
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	61	49	23	37	250

Project / Site name: New Brighton, Mold

Lab Sample Number				1035659	1035660	1035661	1035662	1035663
Sample Reference				TP106	SA05	WS101	WS108	WS109
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.40	0.10	1.20	1.30
Date Sampled				20/08/2018	22/08/2018	23/08/2018	24/08/2018	24/08/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content		0.1 N/A	NONE	11	<u>< 0.1</u> 11	12	35	16
Total mass of sample received	%	0.001		11	11	12	0.89	0.63
	kg	0.001	NONE	1.0	1.0	1.0	0.89	0.05
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.0	6.8	7.3	7.6	-
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	<u> </u>	PICENTJ	~ 1	~ 1	~ 1	_	-
Equivalent)	g/l	0.00125	MCERTS	0.014	0.018	0.012	1.4	-
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	mg/l	1.25	MCERTS	14.2	17.7	12.4	-	-
Organic Matter	%	0.1	MCERTS	0.8	1.6	2.5	-	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-	-	4.6	0.7
Bhanala by UBLC								
Phenols by HPLC Catechol		0.1	100 17005	0.10	0.10	. 0.10		
	mg/kg	0.1	ISO 17025	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	-	-
Resorcinol	mg/kg		ISO 17025			< 0.10	-	-
Cresols (o-, m-, p-) Total Naphthols (sum of 1- and 2- Naphthol)	mg/kg	0.3	ISO 17025	< 0.30 < 0.20	< 0.30 < 0.20	< 0.30 < 0.20	-	-
2-Isopropylphenol	mg/kg	0.2	ISO 17025				-	-
Phenol	mg/kg	0.1	ISO 17025	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	-	-
Trimethylphenol (2,3,5-)	mg/kg	0.1	ISO 17025 ISO 17025	< 0.10	< 0.10	< 0.10	-	-
Total Xylenols and Ethylphenols	mg/kg mg/kg	0.1	ISO 17025	< 0.30	< 0.30	< 0.30	-	
<u> </u>	iiig/kg	0.5	150 17025	< 0.50	< 0.50	< 0.50		
Total Phenols Total Phenols (HPLC)	m a // ca	1.3	ISO 17025	< 1.3	< 1.3	< 1.3	-	
	mg/kg	1.3	150 17025	< 1.3	< 1.3	< 1.3	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	_
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	-	-

Project / Site name: New Brighton, Mold Your Order No: C3915-5881-DI

Lab Sample Number				1035659	1035660	1035661	1035662	1035663
Sample Reference				TP106	SA05	WS101	WS108	WS109
Sample Number				None Supplied				
Depth (m)				0.30	0.40	0.10	1.20	1.30
Date Sampled				20/08/2018	22/08/2018	23/08/2018	24/08/2018	24/08/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.7	6.7	6.6	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	-	-
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	-	-
Chromium (III)	mg/kg	1	NONE	20	21	18	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	21	18	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	21	20	10	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	28	27	29	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	15	18	11	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	33	38	35	-	-

Project / Site name: New Brighton, Mold

Your Order No: C3915-5881-DI

			1035664	1035665	1035666	1035667	1035668
			TP103	WS106	TP110	TP101	WS111
			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			0.90	0.50	2.40	1.40	0.70
			20/08/2018	23/08/2018	20/08/2018	20/08/2018	24/08/2018
							None Supplied
Units	Limit of detection	Accreditation Status					
94	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
							13
	· · ·						0.68
ку	0.001	NUNE	0.70	0.01	0.72	0.57	0.00
Туре	N/A	ISO 17025	-	-	-	-	-
pH Units	N/A	MCERTS	-	-	-	-	-
mg/kg	1	MCERTS	-	-	-	-	-
g/l	0.00125	MCERTS	-	-	-	-	-
	1.25	MOTOTO					
							-
							-
%	0.1	MCERTS	0.5	0.4	0.5	0.8	0.6
_							
							-
			-	-	-	-	-
			-	-	-	-	-
mg/kg	0.2		-	-	-	-	-
mg/kg	0.1	ISO 17025	-	-	-	-	-
mg/kg	0.1	ISO 17025	-	-	-	-	-
mg/kg	0.1	ISO 17025	-	-	-	-	-
mg/kg	0.3	ISO 17025	-	-	-	-	-
				I			I
mg/kg	1.3	ISO 17025	-	-	-	-	-
_							
							-
							-
mg/kg			-	-	-	-	-
mg/kg		MCERTS	-	-	-	-	-
mg/kg	0.05	MCERTS	-	-	-	-	-
mg/kg	0.05	MCERTS	-	-	-	-	-
mg/kg	0.05	MCERTS	-	-	-	-	-
mg/kg	0.05	MCERTS	-	-	-	-	-
mg/kg	0.05	MCERTS	-	-	-	-	-
mg/kg	0.05	MCERTS	-	-	-	-	-
mg/kg	0.05	MCERTS	-	-	-	-	-
mg/kg	0.05	MCERTS	-	-	-	-	-
	0.05	MCERTS	-	-	-	-	-
			-	-	-	-	-
			-	-	-	-	-
			-	-	-	-	-
Ing/Ng	. 0.05	I ICLIVIJ	8	8			8
mg/kg	0.8	MCERTS	-	-	-	-	-
	% % % % kg mg/kg g/l mg/kg g/l mg/kg mg/kg	% 0.1 % N/A kg 0.001 Type N/A pH Units N/A g/l 0.00125 mg/kg 1 g/l 0.00125 mg/l 1.25 % 0.1 % 0.1 % 0.1 % 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.3 mg/kg 0.1 mg/kg 0.3 mg/kg 0.1 mg/kg 0.3 mg/kg 0.3 mg/kg 0.3 mg/kg 0.3 mg/kg 0.3 mg/kg 0.3 mg/kg 0.5 mg/kg 0.5 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.	% 0.1 NONE % N/A NONE % N/A NONE Type N/A ISO 17025 mg/kg 1 MCERTS g/l 0.00125 MCERTS g/l 0.00125 MCERTS mg/kg 1 MCERTS % 0.1 MCERTS % 0.1 MCERTS % 0.1 MCERTS mg/kg 0.1 MCERTS % 0.1 MCERTS mg/kg 0.1 MCERTS mg/kg 0.1 ISO 17025 mg/kg 0.3 ISO 17025 mg/kg 0.1 ISO 17025 mg/kg 0.1 ISO 17025 mg/kg 0.3 ISO 17025 mg/kg 0.3 ISO 17025 mg/kg 0.05 MCERTS mg/kg 0.05 MCERTS mg/kg 0.05 MCERTS mg/kg 0.05	None Supplied 0.90 20/08/2018 None Supplied %	None Supplied None Supplied 0.90 0.50 20/08/2018 23/08/2018 None Supplied None Supplied % 0.1 None Supplied % 0.1 None % N/A None % N/A None % N/A None pH Units N/A MORE pH Units N/A MCERTS g/l 0.00125 MCERTS g/l 0.00125 MCERTS mg/kg 1 MCERTS g/l 0.00125 MCERTS mg/kg 0.1 MCERTS mg/kg 0.1 MCERTS mg/kg 0.1 MCERTS mg/kg 0.1 S0 17025 mg/kg 0.1 ISO 17025	None Supplied None Supplied None Supplied None Supplied 0.90 0.50 2.40 20/08/2018 20/08/2018 20/08/2018 9% 0.1 None Supplied None Supplied 9% 0.1 NONE 10 12 9% 0.01 NONE 0.70 0.61 0.72 Type N/A NONE 0.70 0.61 0.72 Type N/A ISO 17025 - - - mg/kg 1 MCERTS - - - g/l 0.00125 MCERTS - - - mg/kg 0.1 MCERTS - - - mg/kg 0.1 ISO 17025 - - -	None Supplied Supplied Suplied

Project / Site name: New Brighton, Mold Your Order No: C3915-5881-DI

Lab Sample Number				1035664	1035665	1035666	1035667	1035668
Sample Reference				TP103	WS106	TP110	TP101	WS111
Sample Number				None Supplied				
Depth (m)		0.90	0.50	2.40	1.40	0.70		
Date Sampled		20/08/2018	23/08/2018	20/08/2018	20/08/2018	24/08/2018		
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-	-	-	-
Chromium (hexavalent)	mg/kg	1.2	MCERTS	-	-	-	-	-
Chromium (III)	mg/kg	1	NONE	-	-	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	-

Project / Site name: New Brighton, Mold

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1035649	WS108	None Supplied	0.30	Grey clay and sand with gravel.
1035650	WS109	None Supplied	0.20	Brown clay and sand with gravel.
1035651	TP103	None Supplied	0.50	Light brown clay and sand with gravel.
1035652	WS106	None Supplied	0.10	Light brown loam and clay with gravel and vegetation.
1035653	TP110	None Supplied	0.20	Light brown loam and clay with gravel and vegetation.
1035654	TP101	None Supplied	0.10	Light brown loam and clay with gravel and vegetation.
1035655	WS111	None Supplied	0.30	Light grey clay and sand with vegetation.
1035656	TP104	None Supplied	0.20	Brown loam and clay with vegetation and gravel
1035657	WS112	None Supplied	0.20	Brown clay and sand with vegetation and gravel
1035658	WS102	None Supplied	0.20	Brown loam and clay with vegetation and gravel
1035659	TP106	None Supplied	0.30	Light brown clay and sand with gravel and vegetation.
1035660	SA05	None Supplied	0.40	Light brown clay and sand with gravel and vegetation.
1035661	WS101	None Supplied	0.10	Light brown clay and sand with gravel and vegetation.
1035662	WS108	None Supplied	1.20	Grey clay and sand with gravel.
1035663	WS109	None Supplied	1.30	Light brown clay.
1035664	TP103	None Supplied	0.90	Brown clay and sand with gravel.
1035665	WS106	None Supplied	0.50	Light brown clay with vegetation.
1035666	TP110	None Supplied	2.40	Brown clay.
1035667	TP101	None Supplied	1.40	Brown clay and sand.
1035668	WS111	None Supplied	0.70	Brown clay.

Project / Site name: New Brighton, Mold

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Phenols, speciated, in soil, by HPLC	Determination of speciated phenols by HPLC.	In house method based on Blue Book Method.	L030-PL	W	ISO 17025
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Dylan Ingman Brownfield Solutions Ltd William Smith House 173 - 183 Witton Street Northwich Cheshire CW9 5LP

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: d.ingman@brownfield-solutions.co.uk

Analytical Report Number : 18-98569

Project / Site name:	New Brighton, Mold	Samples received on:	30/08/2018
Your job number:	C3915	Samples instructed on:	30/08/2018
Your order number:	C3915-5881-DI	Analysis completed by:	06/09/2018
Report Issue Number:	1	Report issued on:	06/09/2018
Samples Analysed:	14 soil samples		

hat. Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: New Brighton, Mold

Your Order No: C3915-5881-DI

Lab Sample Number				1036212	1036213	1036214	1036215	1036216
Sample Reference				TP104	WS112	TP108	TP106	SA05
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.40	3.50	1.60	1.40	1.40			
Date Sampled	20/08/2018	24/08/2018	20/08/2018	20/08/2018	22/08/2018			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	14	16	11	12
Total mass of sample received	kg	0.001	NONE	0.61	0.59	0.74	0.64	0.63

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	-	-	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	-	-	-	-	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5	0.6	0.6	0.7	0.5

Project / Site name: New Brighton, Mold

Your Order No: C3915-5881-DI

Lab Sample Number				1036217	1036218	1036219	1036220	1036221
Sample Reference				TP101	TP103	SA05	TP104	WS110
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.50	2.20	0.10	1.50	0.50			
Date Sampled	20/08/2018	20/08/2018	22/08/2018	20/08/2018	24/08/2018			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	9.6	9.9	9.8	12	13
Total mass of sample received	kg	0.001	NONE	0.64	0.64	0.92	0.65	0.79

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	6.5	7.3	6.4	7.5	7.6
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.021	0.057	0.022	0.039	0.015
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-	-	-	-

Project / Site name: New Brighton, Mold

Your Order No: C3915-5881-DI

Lab Sample Number				1036222	1036223	1036224	1036225	
Sample Reference				SA04	SA03	SA02	WS112	
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied				
Depth (m)	1.60	1.90	0.30	1.50				
Date Sampled	21/08/2018	21/08/2018	21/08/2018	24/08/2018				
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	15	15	17	12	
Total mass of sample received	ka	0.001	NONE	0.66	0.65	0.56	0.66	

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.9	7.9	7.0	8.0	
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.031	0.048	0.026	0.023	
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-	-	-	

Project / Site name: New Brighton, Mold

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1036212	TP104	None Supplied	0.40	Light brown clay and sand with vegetation.
1036213	WS112	None Supplied	3.50	Brown clay.
1036214	TP108	None Supplied	1.60	Brown clay.
1036215	TP106	None Supplied	1.40	Brown clay.
1036216	SA05	None Supplied	1.40	Brown clay.
1036217	TP101	None Supplied	0.50	Light brown clay with gravel.
1036218	TP103	None Supplied	2.20	Brown clay with gravel.
1036219	SA05	None Supplied	0.10	Brown loam and sand with gravel and vegetation.
1036220	TP104	None Supplied	1.50	Brown clay and sand.
1036221	WS110	None Supplied	0.50	Brown clay.
1036222	SA04	None Supplied	1.60	Brown clay.
1036223	SA03	None Supplied	1.90	Brown clay.
1036224	SA02	None Supplied	0.30	Light grey clay with vegetation.
1036225	WS112	None Supplied	1.50	Brown clay.

Project / Site name: New Brighton, Mold

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Dylan Ingman Brownfield Solutions Ltd William Smith House 173 - 183 Witton Street Northwich Cheshire CW9 5LP

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: d.ingman@brownfield-solutions.co.uk

Analytical Report Number : 18-98451

Project / Site name:	New Brighton, Mold	Samples received on:	30/08/2018
Your job number:	C3915	Samples instructed on:	30/08/2018
Your order number:	C3915-5881-DI	Analysis completed by:	10/09/2018
Report Issue Number:	1	Report issued on:	10/09/2018
Samples Analysed:	1 WAC 10:1 Sample		

TAS Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		18-98451						
•								
				Client: BSL				
Leasting		New Drichten Meld						
Location		New Brighton, Mold		Landfill	Waste Acceptan	o Critoria		
Lab Reference (Sample Number)		1035669 / 1035670		Lanum	Limits			
Sampling Date		24/08/2018			Stable Non-			
Sample ID		W108			reactive			
Depth (m)		0.30	Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill			
Solid Waste Analysis								
TOC (%)**	1.9			3%	5%	6%		
Loss on Ignition (%) **	5.4					10%		
BTEX (µg/kg) **	< 10			6000				
Sum of PCBs (mg/kg) **	< 0.007			1				
Mineral Oil (mg/kg)	< 10			500				
Total PAH (WAC-17) (mg/kg)	< 0.9			100				
pH (units)**	7.4				>6			
Acid Neutralisation Capacity (mol / kg)	3.6				To be evaluated	To be evaluate		
Eluate Analysis	10:1		10:1	Limit value	s for compliance le	eaching test		
(BS EN 12457 - 2 preparation utilising end over end leaching				using BS EN	12457-2 at L/S 10	l/kg (mg/kg)		
procedure)	mg/l		mg/kg			n		
Arsenic *	0.0029		0.0214	0.5	2	25		
Barium *	0.0138		0.102	20	100	300		
Cadmium *	< 0.0001		< 0.0008	0.04	1	5		
Chromium *	0.0019		0.014	0.5	10	70		
Copper *	0.0085		0.063	2	50	100		
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2		
Molybdenum *	0.0013		0.0096	0.5	10	30		
Nickel *	0.0018		0.014	0.4	10	40		
Lead *	0.0060		0.045	0.5	10	50		
Antimony *	< 0.0017		< 0.017	0.06	0.7	5		
Selenium *	< 0.0040		< 0.040	0.1	0.5	7		
Zinc *	0.0078		0.058	4	50	200		
Chloride *	2.0		15	800	4000	25000		
Fluoride	0.60		4.4	10	150	500		
Sulphate *	3.4		25	1000	20000	50000		
TDS*	49		360	4000	60000	100000		
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-		
DOC	5.55		41.2	500	800	1000		
Look Toth Tother								
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	0.89							
Dry Matter (%)	81				İ			
Moisture (%)	19							
Results are expressed on a dry weight basis, after correction for mo	inture content	applicable		*- 11// 40 1"	od (liquid -burt-	aluraia anti-i		
	nstare content when	z avvillable.		 UNAS accredit 	ed (liquid eluate and	aiyələ uliiy)		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: New Brighton, Mold

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1035669	W108	None Supplied	0.30	Grey clay and sand with gravel.

Project / Site name: New Brighton, Mold

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	W	NONE
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L047-PL	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	in-house method	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS

Project / Site name: New Brighton, Mold

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX C Geotechnical Testing Results

Client:

Contact: Site Name:

Hole No.:

Site Address:

Test Results

Laboratory Reference:

Sample Reference: Soil Description:

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

Brown slightly gravelly very sandy CLAY

Brownfield Solutions Ltd

173 - 183 Witton Street

William Smith House

New Brighton Mold

1035092

Not Given

TP102

Northwich Cheshire

CW9 5LP Dylan Ingman

Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: C3915 Job Number: 18-98359 Date Sampled: Not Given

Date Received: 30/08/2018

Date Tested: 08/09/2018 Sampled By: DI

Depth Top [m]: 1.80 Depth Base [m]: Not Given Sample Type: D

Received Moisture Content [%]					Plastic Limit [%]					Plas	ticity [%]		ex	% Passing 42 BS Test Sie			
9.0			31					16		15						80	
100 90 80 70 60 50 40 40 30 20 10		CL		CI		СН					CE						ine
0		ML		МІ						_							
0 10	20	30)	40	50	60	70 LIQ	ع 0 ا UID LI I	80 MIT	90	100	11	.0	120	130	14	10 15
	Legen	d, base	d on E	8S 5930	:2015 Co	-		e for site	investi	gations							
	С	Clay			P L	lasticity Lo	Św				Liqui	d Limit v 35					
	М	Silt			I	М	edium	I			35 to						
					н		gh				50 to						
					V		ery hig				70 to						
					E	E	ktreme	ely high			exce	eding 9	90				

Remarks: Approved:

Dariusz Piotrowski PL Laboratory Manager Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Client:

Contact: Site Name:

Hole No.:

Site Address:

Test Results

Laboratory Reference:

Sample Reference: Soil Description:

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

Brown slightly gravelly very sandy CLAY

Brownfield Solutions Ltd

173 - 183 Witton Street

William Smith House

New Brighton Mold

1035093

WS104

Not Given

Northwich Cheshire

CW9 5LP Dylan Ingman

Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: C3915 Job Number: 18-98359 Date Sampled: Not Given

Date Received: 30/08/2018

Date Tested: 08/09/2018 Sampled By: DI

Depth Top [m]: 2.50 Depth Base [m]: Not Given Sample Type: D

Receive Conte		•				Plastic Limit [%]					Pla	astic]	ity Ir %]	ndex		% Passing 425µ BS Test Sieve				
1:	2				29			16				13					85			
100	1				_							-								
90																			A lin	
80																	/	1		
70	-				+	-						+	С	E						
60	-				+	_						_		/						
Š G 50											cv			_						
Z ∽											\searrow		М	E						
50 50 40 30								C	+		мν									
ASI 30	-					СІ		\rightarrow		+		+								
≂ 20	-				_		\checkmark	M	-			_								
10				CL																
		••••		ML		MI														
0	0	10	20	30	-	40	50	60		70 2010 L	80 .IMIT	90	10	00	110	12	0 1	i 130	140	150
			Leger	nd, base	d on E	8S 5930				ice for si	te invest	tigatior								
			С	Clay				Plastio L	city Low					quid Li elow 35						
			М	Silt				I	Mediu	m				5 to 50						
								Н	High	I.) to 70						
								V E	Very h	ngn nely higł	h) to 90 (ceedir						

Remarks: Approved:

Dariusz Piotrowski PL Laboratory Manager Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Client:

Contact: Site Name:

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: C3915 Job Number: 18-98359 Date Sampled: Not Given

Date Received: 30/08/2018

Date Tested: 08/09/2018 Sampled By: DI

Test Results

Site Address:

Laboratory Reference:1035094Hole No.:WS103Sample Reference:Not GivenSoil Description:Mottled brown slightly gravelly very sandy CLAYSample Preparation:Tested after washing to remove >425um

Brownfield Solutions Ltd

173 - 183 Witton Street

William Smith House

New Brighton Mold

Northwich Cheshire

CW9 5LP Dylan Ingman

Not Given

Depth Top [m]: 0.80 Depth Base [m]: Not Given Sample Type: D

As Received Moisture Content [%]	Liquid Limit [%]	Plastic Limit [%]	Plasticity Index [%]	% Passing 425µm BS Test Sieve
11	26	15	11	85
100				
90 -				A line
80 -				
70 -			CE	
60		cv		
Q 50			ME	
		CH MV		
0 50	CI			
20 -	CL	MH		
10	ML MI			

Legend, based on BS 5930:2015 Code of practice for site investigations

0

50

10 0000	or practice
Plast	ticity
L	Low
I	Medium

60

70

LIQUID LIMIT

80

90

100

Liquid Limit

below 35 35 to 50

50 to 70

70 to 90

110

120

130

140

150

H High V Very high E Extremely

Extremely high exceeding 90 append to classification for organic material (eg CHO)

0 + 0

10

20

С

М

30

Clay

Silt

Organic

40

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited. uJ. Pionierow 39, 41-711 Ruda Slaska, Poland."

Client:

Contact: Site Name:

Hole No.:

Site Address:

Test Results

Laboratory Reference:

Sample Reference: Soil Description:

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

Brown slightly gravelly very sandy CLAY

Brownfield Solutions Ltd

173 - 183 Witton Street

William Smith House

New Brighton Mold

1035095

Not Given

TP105

Northwich Cheshire

CW9 5LP Dylan Ingman

Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: C3915 Job Number: 18-98359 Date Sampled: Not Given

Date Received: 30/08/2018

Date Tested: 08/09/2018 Sampled By: DI

Depth Top [m]: 1.20 Depth Base [m]: Not Given Sample Type: D

Conten	ture	Liquid Limit [%]							Pla	istic %]			Plasticity Index [%]					% Passing 42 BS Test Sie						
14	14			3	31				16					15						83				
100 90 80 70 60 50 40 30 20 10				CL	•		CI		/	H H		C	/		С	/								
0	0 :	10	20	<u>МL</u> 3	0	4		50	6	50	70	8	0	90	10	0	110	1	.20	130	1	40 1	 150	
												D LIN												
		L	.egen	d, bas	ed or	n BS	5930	:2015	Code Plas		ctice fo	or site	investi	gation		quid L	imit							
			С	Cla					L	Low						elow 3								
			М	Sil	t				I	Med						5 to 50								
									Н	High) to 70								
								V	Very	/ high				70) to 90)								

Remarks: Approved:

Dariusz Piotrowski PL Laboratory Manager Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Client:

Contact: Site Name:

Hole No.:

Site Address:

Test Results

Laboratory Reference:

Sample Reference: Soil Description:

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

Brown slightly gravelly very sandy CLAY

Brownfield Solutions Ltd

173 - 183 Witton Street

William Smith House

New Brighton Mold

1035096

Not Given

TP111

Northwich Cheshire

CW9 5LP Dylan Ingman

Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: C3915 Job Number: 18-98359 Date Sampled: Not Given

Date Received: 30/08/2018

Date Tested: 08/09/2018 Sampled By: DI

Depth Top [m]: 1.30 Depth Base [m]: Not Given Sample Type: D

94
A line
130 140 150

Remarks: Approved:

Dariusz Piotrowski PL Laboratory Manager Date Reported:

13/09/2018

Signed:

Darren Berrill Geotechnical General Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Client:

Contact: Site Name:

Hole No.:

Site Address:

Test Results

Laboratory Reference:

Sample Reference: Soil Description:

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

Brownfield Solutions Ltd

173 - 183 Witton Street

William Smith House

New Brighton Mold

1035097

Not Given

Grey very sandy CLAY

TP107

Northwich Cheshire

CW9 5LP Dylan Ingman

Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: C3915 Job Number: 18-98359 Date Sampled: Not Given

Date Received: 30/08/2018

Date Tested: 08/09/2018 Sampled By: DI

Depth Top [m]: 0.30 Depth Base [m]: Not Given Sample Type: D

s Received Moisture Content [%]		Liquid ?%]		imit		Plastic Limit [%]					Plast	ticity [%]		ex	%	% Passing 428 BS Test Siev				
13	29					16					13					100				
100																		7		
90					+-					+-						AI	ine	1		
80																		_		
70											05									
60 -											CE									
Ĕ								с	v											
										1	ME									
						СН		M	IV											
50				СІ		\checkmark	-			+								_		
20		CL			┦	мн				+										
10			/	мі	+					+								-		
o 		ML																4		
0 10	20	30	4	10	50	60		0 8 UID LII	0 MIT	90	100	11	0 1	120	130	14	10 1	L50		
	Legen	d, based or	n BS	S 5930:				e for site	investi	gations										
	С	Clay			1	Plasticity	y ow				Liqui belov	d Limit v 35								
	М	Silt			I		ledium	ı			35 to	50								
							ligh				50 to									
							ery hie	gh ely high			70 to exce	90 eding 9	90							
		Organic				Эа	nnend	l to classi	fication	for or										

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Client:

Contact: Site Name:

Hole No.:

Site Address:

Test Results

Laboratory Reference:

Sample Reference:

Soil Description:

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

Brownfield Solutions Ltd

173 - 183 Witton Street

William Smith House

New Brighton Mold

1035098

Not Given

Grey sandy CLAY with rootlets

SA03

Northwich Cheshire

CW9 5LP Dylan Ingman

Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: C3915 Job Number: 18-98359 Date Sampled: Not Given

Date Received: 30/08/2018

Date Tested: 08/09/2018 Sampled By: DI

Depth Top [m]: 0.40 Depth Base [m]: Not Given Sample Type: D

s Received Moisture Content [%]				Liquid Limit [%]						Plastic Limit [%]					Plasticity Index [%]					% Passing 42 BS Test Sie				
:	20					39						20					19				100			
10	0т					_								-										
9	0 -																					ine		
8																								
7	0 -														C	E								
× 6	0 -					+		\rightarrow			_			+	_									
	0 -					+		\rightarrow		_	_		cv	\checkmark	<u> </u>	E			_				_	
	0									сн														
													vv											
PLASTICITY INDEX							CI																	
2					CL			1		мн														
1	0 -	•••••				╀	м				_													
	0 -				ML		-			-				-		-	_							
	0		10	20	30		40	50)	60	7 LIO	0 UID L	80 MIT	90	10	00	11() :	120	130	1	40	150	
				Legen	id, basec	l on B	IS 593	0:201	5 Cod	e of p				tigatior	าร									
				С	Clay				Plasticity						Liquid Limit below 35									
				м	Silt				L		edium	ı				5 to 5								
									н		gh				5	0 to 7	0							
									V E		ery hig	gh ely high				0 to 9 xceec		0						

Remarks: Approved:

Dariusz Piotrowski PL Laboratory Manager Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Client:

Contact: Site Name:

Hole No.:

Site Address:

Test Results

Laboratory Reference:

Sample Reference: Soil Description:

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

Brownfield Solutions Ltd

173 - 183 Witton Street

William Smith House

New Brighton Mold

1035099

Not Given

Brown clayey SAND

TP108

Northwich Cheshire

CW9 5LP Dylan Ingman

Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: C3915 Job Number: 18-98359 Date Sampled: Not Given

Date Received: 30/08/2018

Date Tested: 08/09/2018 Sampled By: DI

Depth Top [m]: 2.20 Depth Base [m]: Not Given Sample Type: D

s Received Moist Content [%]	ıre	Liquic ?]		nit			Plas	tic Lin [%]	nit		Plast	ticity I [%]	ndex	0,	% Passing 425 BS Test Siev				
21		24						14				10			100				
100 -								1]				
90 -								<u> </u>							A li	ine			
80										_					\geq				
70								ļ			CE		\nearrow						
60 -												\checkmark							
3 50								(v										
40						CI					ME								
						U			٨v										
				CI															
10		CL				MI	1												
		ML		МІ															
	0 20	30	40)	50	60		70 8 2010 LI	1 80 MIT	90	100	110	120	130	0 14	10 15	D		
	Lege	nd, based o	n BS	5930:2		ode o Plasti		ce for site	e invest	igations		d Limit							
	С	Clay			L	Low				belov	v 35								
	М	Silt				I H	Mediu High	m			35 to 50 to								
						V	Very h				70 to	90							
						E		nely high			exce	eding 90							
		Organic				0	appen	d to class	sificatio	n for org	ganic ma	terial (eg	CHO)						

Remarks: Approved:

Dariusz Piotrowski PL Laboratory Manager

Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Client Address:

Client:

Contact: Site Name:

Hole No.:

Site Address:

Test Results

Laboratory Reference:

Sample Reference:

Soil Description:

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

Brownfield Solutions Ltd

173 - 183 Witton Street

William Smith House

New Brighton Mold

1035100

Not Given

Brown very sandy CLAY

SA01

Northwich Cheshire

CW9 5LP Dylan Ingman

Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: C3915 Job Number: 18-98359 Date Sampled: Not Given

Date Received: 30/08/2018

Date Tested: 08/09/2018 Sampled By: DI

Depth Top [m]: 1.40 Depth Base [m]: Not Given Sample Type: D

Received Mois Content [%]	ture	Liquid Limit [%] 27				Plastic Limit [%] 16				Plasticity Index [%] 11		%	% Passing 425 BS Test Sieve 99						
17																			
100				-					1		_								
90					_						_						AI	ine	1
80																			
70																			
60 -												CE							
									0	v									
Q 50											1	ME							-
				T		+	С	H /		٨v									
50				╈	СІ		/				╈								-
20			CL			1	M	H								+			-
10			ML	╀	мі	╈													-
0 0	10	20	ML 30		40	50	6	0		30	90	100	1:	10	120	130) 14	10 1	- 150
				_															
	Le			on B	\$ 5930	:2015	Plasi		ice for site	nvesti	gations		id Limi	it					
		C M	Clay Silt				L	Low Mediu	Im			bela 35 t	w 35						
		IVI	Oiit				н	High				50 t							
							V	Very I Extre				70 t	o 90						

Remarks: Approved:

Manager

Dariusz Piotrowski PL Laboratory

Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland." for and on behalf of i2 Analytical Ltd

Client Address:

Client:

Contact: Site Name:

Hole No.:

Site Address:

Test Results

Laboratory Reference:

Sample Reference: Soil Description:

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

Brown slightly gravelly very sandy CLAY

Brownfield Solutions Ltd

173 - 183 Witton Street

William Smith House

New Brighton Mold

1035101

Not Given

SA07

Northwich Cheshire

CW9 5LP Dylan Ingman

Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: C3915 Job Number: 18-98359 Date Sampled: Not Given

Date Received: 30/08/2018

Date Tested: 08/09/2018 Sampled By: DI

Depth Top [m]: 1.30 Depth Base [m]: Not Given Sample Type: D

Received Mois Content [%]	sture	Liquid Limit [%]				Plastic Limit [%] 17				Plasticity Index [%] 16		% Passing 425 BS Test Sieve											
15		33										87											
100 -																							
90 -																					AI	line	
80]
70 -							╈								CE								
× ⁶⁰		+					╈		+	-						/	-						
GH 50		-		_			+		-	_		cv	\nearrow		ме		-						
<u>د</u> 40		_					_		ЭН	_		\checkmark	$ \rightarrow$		_							<u> </u>	
50										\leq		мν											
PLA						CI																	
2 0			CL	•				N	ИН														
10				1	/	мі	╈		-	—												-	
0			ML				-								-								
0	10	20	3	0	4	0	50	(60	7 LIQ	0 UID L	80 IMIT	90		100	1	10	12	20	130	1	40	150
	L	egeno	d, bas	ed on	BS	5930:	2015	i Code	e of p		e for si			ons									
		С	Cla	v				Pla: L	sticity Lo						Liqui belov		nit						
		М	Sil					I		edium	ı				35 to								
								н	Hi	-					50 to								
								V E		ery hig	gh ely high				70 to exce								

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager Date Reported:

Signed:

Darren Berrill Geotechnical General Manager

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited. uJ. Pionierow 39, 41-711 Ruda Slaska, Poland." for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

Summary of Classification Test Results

Client:	Brownfield Solutions Ltd
Client Address:	William Smith House
	173 - 183 Witton Street
	Northwich
	Cheshire
	CW9 5LP
Contact:	Dylan Ingman
Site Name:	New Brighton Mold
Site Address:	Not Given

Test results

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: C3915 Job Number: 18-98359 Date Sampled: Not Given Date Received: 30/08/2018

> Date Tested: 08/09/2018 Sampled By: DI

			Sa	mple	-				Atte	rberg		Der	nsity	Total
Laboratory Reference	Hole No.	Reference	Top depth [m]	Base depth [m]	Туре	Soil Description	M/C	% Passing 425um	LL	PL	PI	bulk	PD	Porosity
							%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3
1035100	SA01	Not Given	1.40	Not Given	D	Brown very sandy CLAY	17	99	27	16	11			
1035098	SA03	Not Given	0.40	Not Given	D	Grey sandy CLAY with rootlets	20	100	39	20	19			
1035101	SA07	Not Given	1.30	Not Given	D	Brown slightly gravelly very sandy CLAY	15	87	33	17	16			
1035092	TP102	Not Given	1.80	Not Given	D	Brown slightly gravelly very sandy CLAY	9.0	80	31	16	15			
1035095	TP105	Not Given	1.20	Not Given	D	Brown slightly gravelly very sandy CLAY	14	83	31	16	15			
1035097	TP107	Not Given	0.30	Not Given	D	Grey very sandy CLAY	13	100	29	16	13			
1035099	TP108	Not Given	2.20	Not Given	D	Brown clayey SAND	21	100	24	14	10			
1035096	TP111	Not Given	1.30	Not Given	D	Brown slightly gravelly very sandy CLAY	16	94	28	15	13			
1035094	WS103	Not Given	0.80	Not Given	D	Mottled brown slightly gravelly very sandy CLAY	11	85	26	15	11			
1035093	WS104	Not Given	2.50	Not Given	D	Brown slightly gravelly very sandy CLAY	12	85	29	16	13			

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 13/09/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at Z Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Protesti

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

APPENDIX D Groundwater Monitoring Results

STEWART MILNE

NEW BRIGHTON ROAD, MOLD

C3915

Groundwater Monitoring Results

		Groundwater Level (m bgl)	
Location	13/09/2018	09/10/2018	23/10/2018
WS101	4.13	4.45	4.58
WS103	3.60	3.41	3.67
WS106	2.70	2.60	2.63
WS108	1.70	0.95	0.69
WS110	Lock on well head jammed.	Lock on well head jammed.	0.93

APPENDIX E Contaminated Land Screening Values

Contaminated Land Screening Values

In assessing the potential for contamination Brownfield Solutions Limited (BSL) follows UK guidance and current best practice.

General

The current recommended method for assessing contamination is on the basis of:

Source-Pathway-Receptor

Where any one of these "pollution linkages" is absent there is deemed to be no risk.

Fundamentally receptors can be considered as humans and controlled waters (surface and ground waters).

The purpose of using Tier 1 screening levels is to have a simple means of assessing the potential contamination of a site and to inform decisions on whether further investigation is warranted or whether an option to undertake clean up based on the data to hand is cost effective.

Human Health

Current UK guidance is provided by DEFRA and the Environment Agency (EA). Publications forming part of the guidance include; CLEA Model, toxicological reports and soil guideline values (SGV), collectively referred to as the CLEA Guidance. The CLEA Guidance has included a number of publications which have provided initial screening values for soil contamination based on standard land uses and soil assumptions.

CLEA guidance has gone through a number of revisions, all of the original SGV's that were published have been withdrawn and publication of new SGV's commenced in 2009.

For determinands where no SGVs are available, S4UL values have been published using the CLEA 1.06 Model. These are the third set of generic assessment criteria generated by CIEH, and replace the previous two sets of GACs. The revised S4UL values are based on greater knowledge of relevant toxicology and further consideration of exposure frequencies.

No SGV or S4UL is available for lead as this is derived based on blood lead levels. C4SL values for six determinands including lead was published by DEFRA/CL:AIRE in December 2014 and they represent a low risk as opposed to minimal risk. The C4SL values are based on a sandy loam with 6% Soil Organic Matter. These screening values were published by DEFRA for Part 2A use, although with the dual purpose for use under planning. However these have not been officially accepted by Local Government for use under planning. S4ULs remain the first reference due to the broader range of end uses and soil organic content.

The preference from the EA is that site specific screening levels are used wherever possible. Due to numerous factors it is not always possible to utilise site specific values. In these instances the following data sources are used in the order of preference given below:

- Current UK SGV's
- CIEH S4UL values (derived by CIEH/LQM)
- DEFRA/CL:AIRE C4SL's
- CL:AIRE GAC values
- Guidance from other European countries
- Guidance from the outside Europe.

Controlled Waters

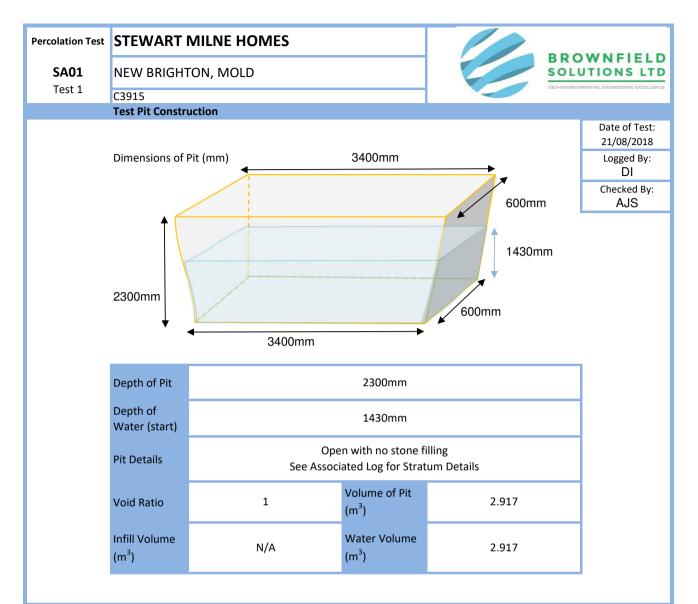
The European Water Framework Directive (WFD) became UK law in December 2003. It was created to ensure that European countries manage their rivers, groundwater and lakes so that they stay healthy for people and for wildlife.

This is achieved by the use of chemical standards for surface waters and groundwater. These values describe concentrations of chemicals that are not expected to cause harm to environmental organisms or human health, provided they are not exceeded. The same chemical may have several standards for different environmental regimes, and for different protection objectives.

Statutory Standards are set in legislation and if exceeded, this constitutes non-compliance with statutory obligations. European Directives are implemented in England and Wales by corresponding statutory instruments (i.e. regulations). The statutory instruments can be the exact same standards as they appear in the Directive or be more stringent.

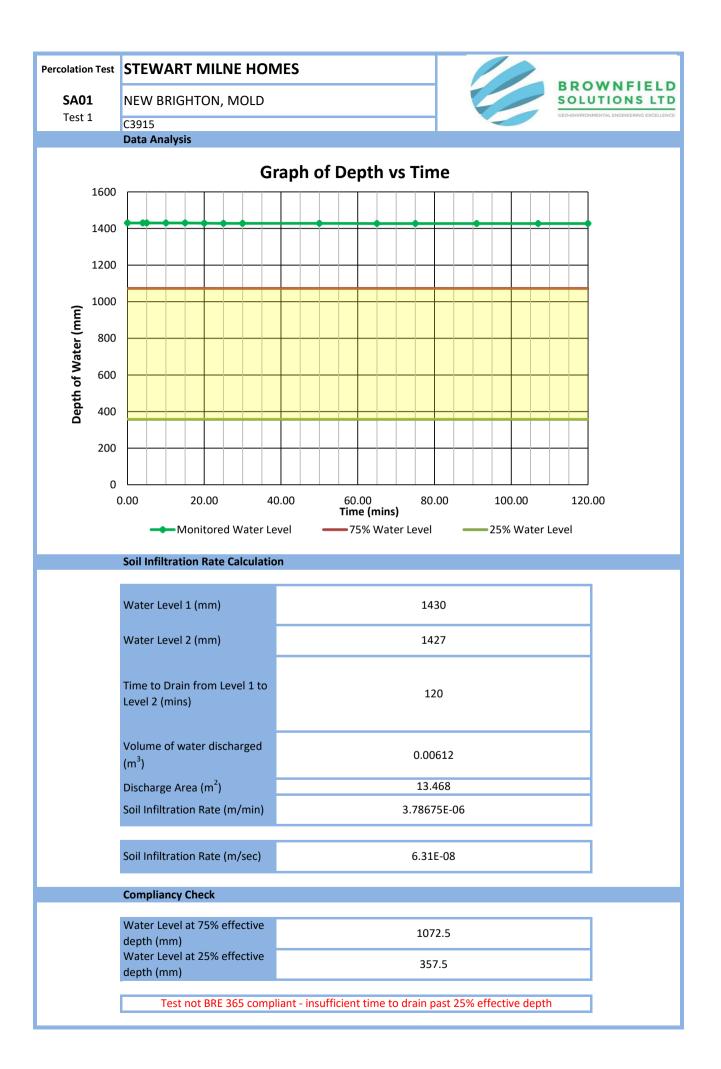
A number of non-statutory standards also exist, these are set by various organisations (including the EA) for chemicals that are considered to be of concern, but are not covered by any specific legislation.

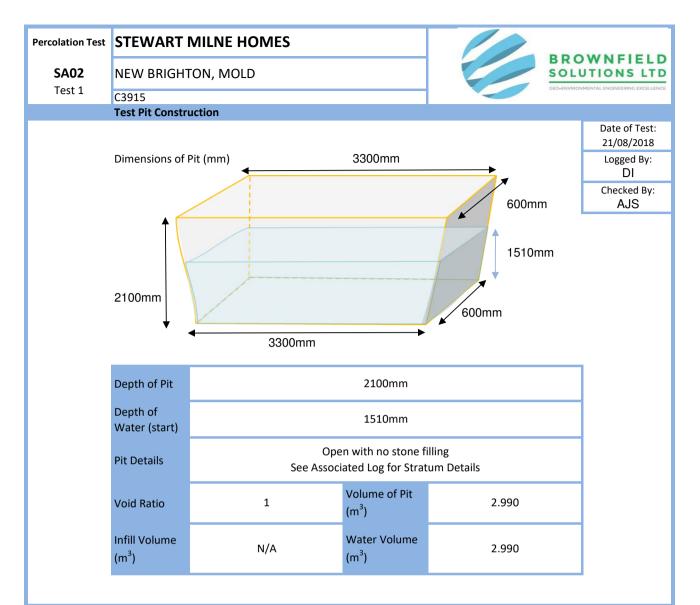
The chemical standards used in the UK to control impaction of contamination on controlled waters are Environmental Quality Standards (EQS). The EQS's cover a large number of compounds.


Where certain compounds are not covered by the EQS these are commonly compared to the UK Drinking Water Standards (DWS).

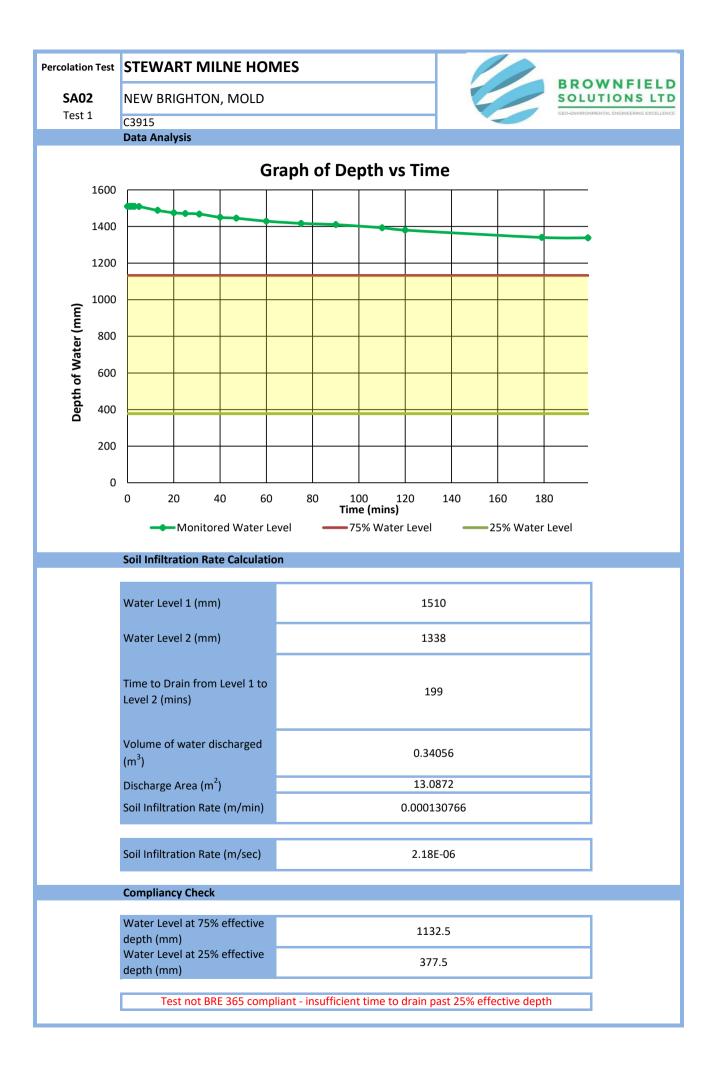
Further Assessment

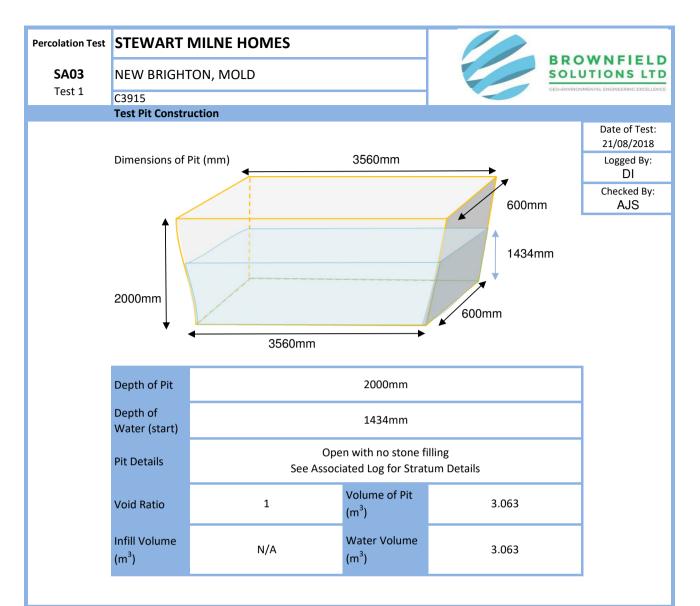
When screening values are exceeded then further consideration is required. This could include the use of simple measures to break the pollution pathway and mitigate the risk, further more detailed investigation, including the deriving of site specific values to better define the risk and to design appropriate remedial measures.




APPENDIX F Percolation Test Results

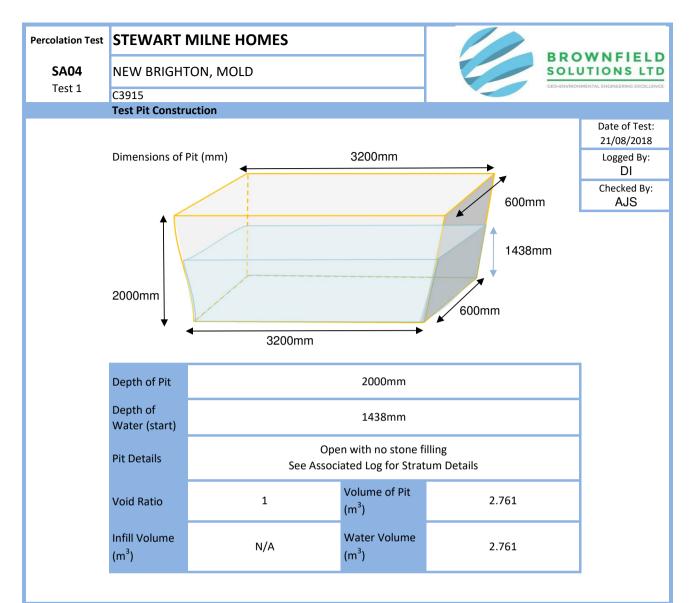
Site Recorded Data


Time (mins)	Depth to water (mm)	Depth of water (mm)	Time (mins)	Depth to water (mm)	Depth of water (mm)
0.00	870	1430			
4.00	870	1430			
5.00	870	1430			
10.00	870	1430			
15.00	870	1430			
20.00	871	1429			
25.00	872	1428			
30.00	872	1428			
50.00	872	1428			
65.00	873	1427			
75.00	873	1427			
91.00	873	1427			
107.00	873	1427			
120.00	873	1427			
End of Test	End of Test	End of Test			

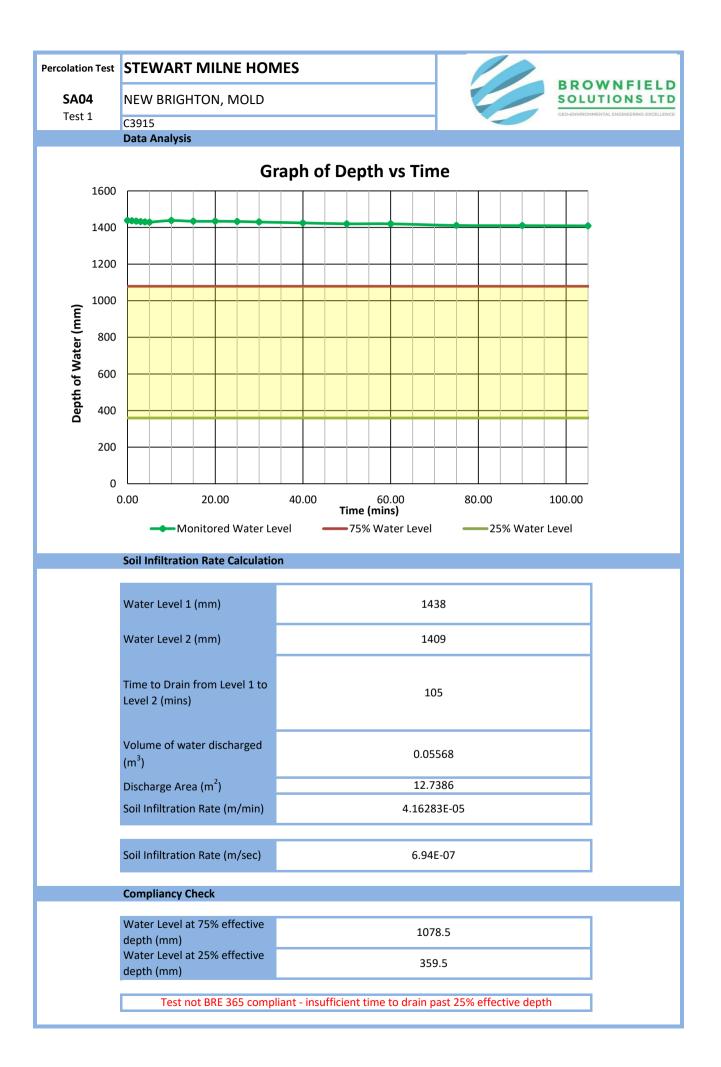


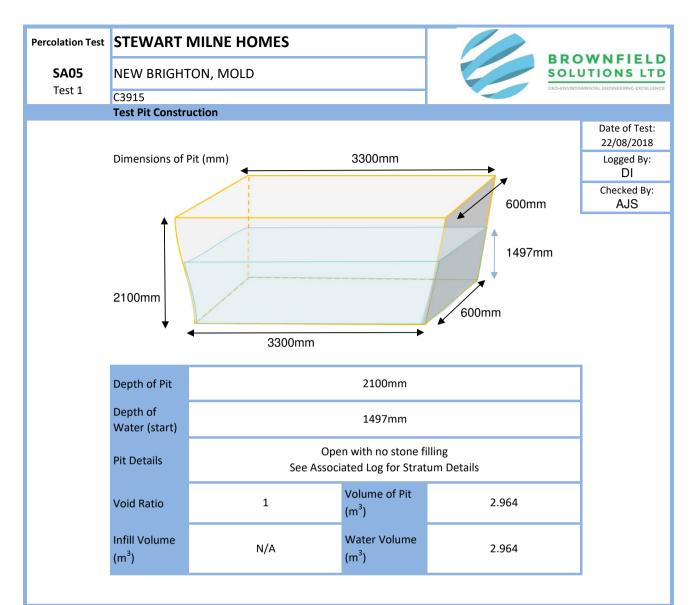
Site Recorded Data

Time (mins)	Depth to water (mm)	Depth of water (mm)	Time (mins)	Depth to water (mm)	Depth of water (mm)
0.00	590	1510	End of Test	End of Test	End of Test
1.00	590	1510			
2.00	590	1510			
3.00	590	1510			
5.00	591	1509			
13.00	612	1488			
20.00	625	1475			
25.00	629	1471			
31.00	632	1468			
40.00	650	1450			
47.00	655	1445			
60.00	671	1429			
75.00	683	1417			
90.00	690	1410			
110.00	707	1393			
120.00	720	1380			
179.00	760	1340			
199.00	762	1338			

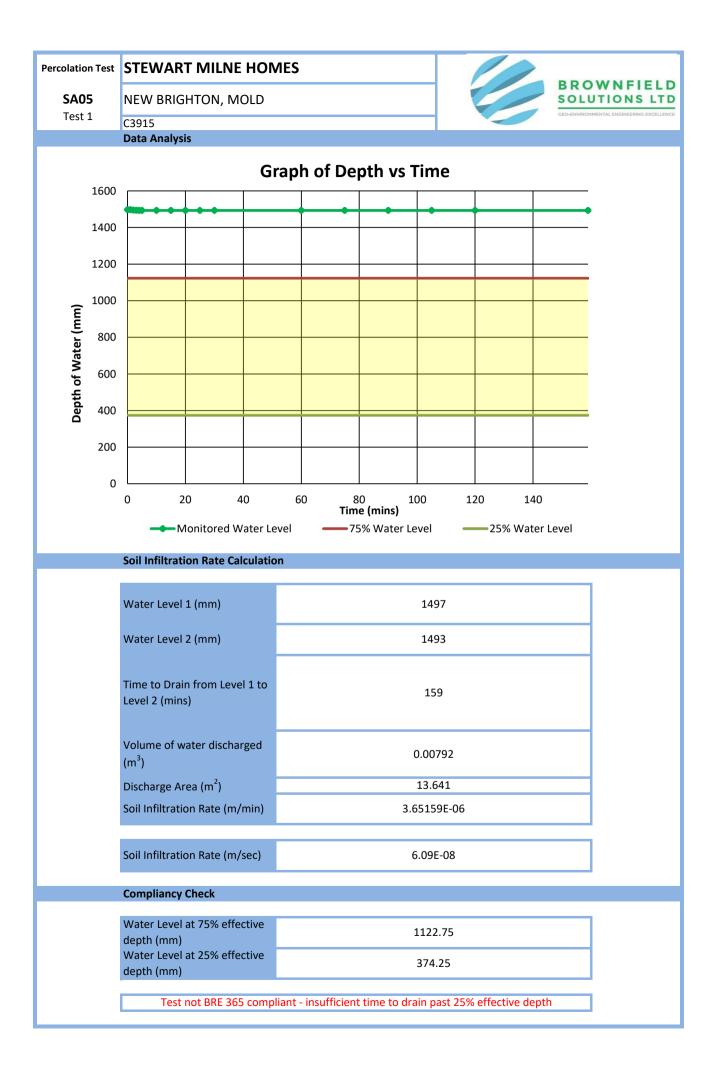


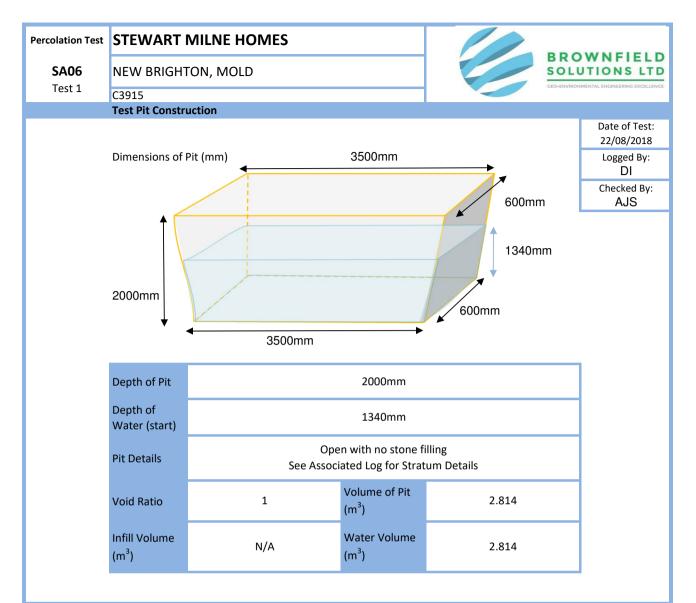
Site Recorded Data


Time (mins)	Depth to water (mm)	Depth of water (mm)	Time (mins)	Depth to water (mm)	Depth of water (mm)
0.00	566	1434	186.0	700	1300
1.00	569	1431	End of Test	End of Test	End of Test
2.00	569	1431			
3.00	580	1420			
4.00	580	1420			
5.00	580	1420			
10.00	587	1413			
15.00	594	1406			
20.00	595	1405			
25.00	602	1398			
30.00	612	1388			
40.00	621	1379			
50.00	631	1369			
60.00	640	1360			
75.00	653	1347			
80.00	657	1343			
100.00	674	1326			
120.00	681	1319			

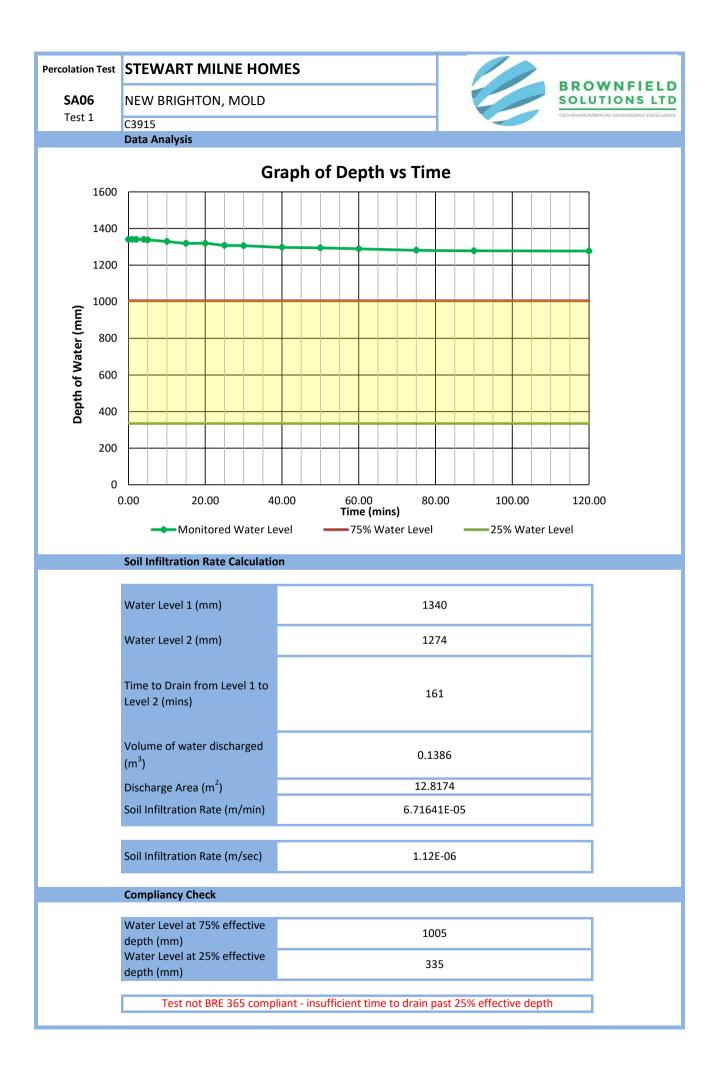


Site Recorded Data


Time (mins)	Depth to water (mm)	Depth of water (mm)	Time (mins)	Depth to water (mm)	Depth of water (mm)
0.00	562	1438			
1.00	563	1437			
2.00	566	1434			
3.00	568	1432			
4.00	570	1430			
5.00	571	1429			
10.00	562	1438			
15.00	566	1434			
20.00	566	1434			
25.00	567	1433			
30.00	570	1430			
40.00	575	1425			
50.00	580	1420			
60.00	580	1420			
75.00	589	1411			
90.00	590	1410			
105.00	591	1409			
End of Test	End of Test	End of Test			

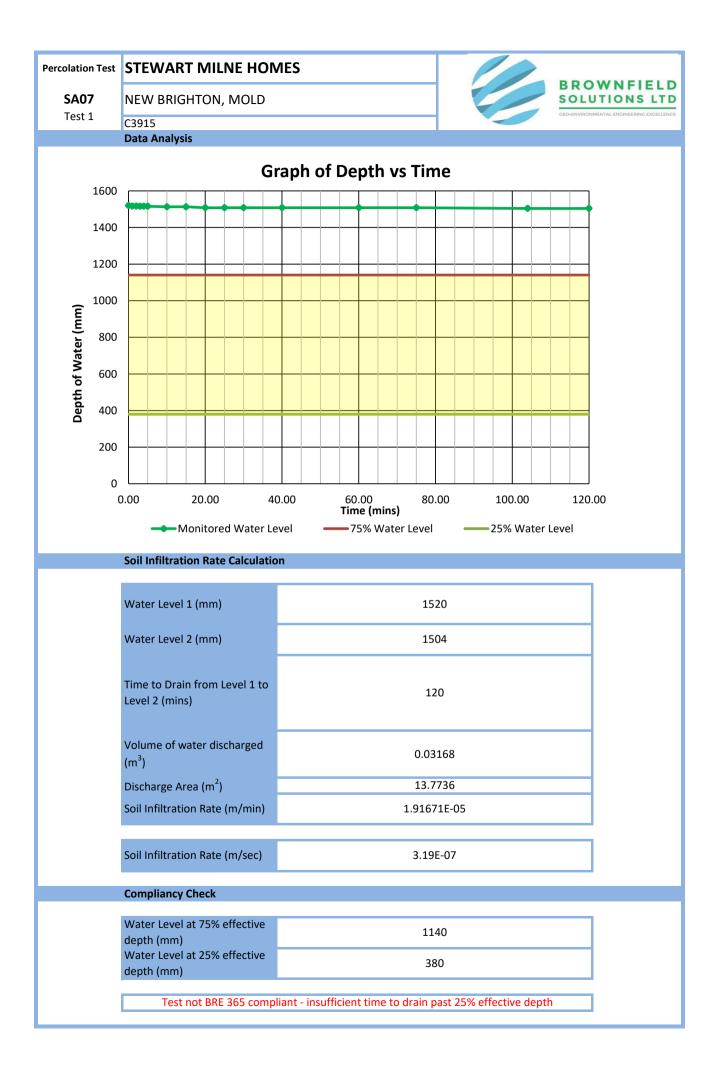


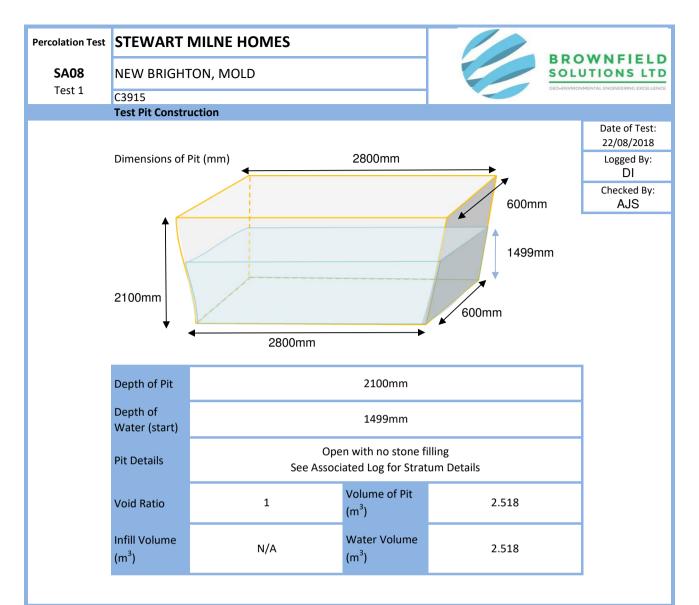
Site Recorded Data


Time (mins)	Depth to water (mm)	Depth of water (mm)	Time (mins)	Depth to water (mm)	Depth of water (mm)
0.00	603	1497			
1.00	603	1497			
2.00	605	1495			
3.00	606	1494			
4.00	607	1493			
5.00	607	1493			
10.00	607	1493			
15.00	607	1493			
20.00	607	1493			
25.00	607	1493			
30.00	607	1493			
60.00	607	1493			
75.00	607	1493			
90.00	607	1493			
105.00	607	1493			
120.00	607	1493			
159.00	607	1493			
End of Test	End of Test	End of Test			

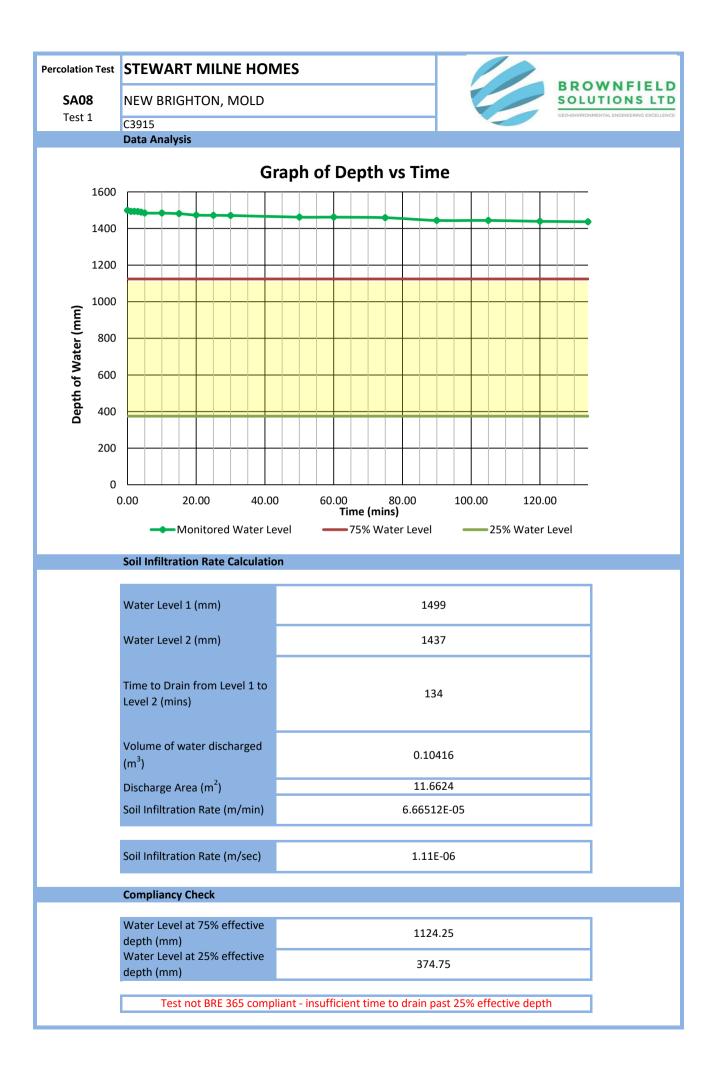


Site Recorded Data


Time (mins)	Depth to water (mm)	Depth of water (mm)	Time (mins)	Depth to water (mm)	Depth of water (mm)
0.00	660	1340			
1.00	660	1340			
2.00	660	1340			
4.00	660	1340			
5.00	662	1338			
10.00	671	1329			
15.00	681	1319			
20.00	681	1319			
25.00	692	1308			
30.00	694	1306			
40.00	703	1297			
50.00	706	1294			
60.00	711	1289			
75.00	719	1281			
90.00	722	1278			
120.00	723	1277			
161.00	726	1274			
End of Test	End of Test	End of Test			



Site Recorded Data


Time (mins)	Depth to water (mm)	Depth of water (mm)	Time (mins)	Depth to water (mm)	Depth of water (mm)
0.00	580	1520			
1.00	583	1517			
2.00	583	1517			
3.00	584	1516			
4.00	584	1516			
5.00	584	1516			
10.00	587	1513			
15.00	587	1513			
20.00	592	1508			
25.00	592	1508			
30.00	592	1508			
40.00	592	1508			
60.00	592	1508			
75.00	592	1508			
104.00	596	1504			
120.00	596	1504			
End of Test	End of Test	End of Test			

Site Recorded Data

Time (mins)	Depth to water (mm)	Depth of water (mm)	Time (mins)	Depth to water (mm)	Depth of water (mm)
0.00	601	1499	End of Test	End of Test	End of Test
1.00	607	1493			
2.00	607	1493			
3.00	608	1492			
4.00	611	1489			
5.00	616	1484			
10.00	616	1484			
15.00	619	1481			
20.00	627	1473			
25.00	628	1472			
30.00	629	1471			
50.00	638	1462			
60.00	638	1462			
75.00	641	1459			
90.00	656	1444			
105.00	656	1444			
120.00	661	1439			
134.00	663	1437			

APPENDIX G CIRIA Risk Assessment Methodology

Contaminated Land Risk Assessment

Contaminated Land Risk Assessment is a technique that identifies and considers the associated risk, determines whether the risks are significant and whether action needs to be taken. The four main stages of risk assessment are:

Hazard Identification \Box Hazard Assessment \Box Risk Estimation \Box Risk Evaluation

CLR11 outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. The starting point of the risk assessment is to identify the context of the problem and the objectives of the process. Under CLR11, three tiers of risk assessment exist - Preliminary, Generic Quantitative and Detailed Quantitative.

Formulating and developing a conceptual model for the site is an important requirement of risk assessment, this supports the identification and assessment of pollutant linkages. Development of the conceptual model forms the main part of preliminary risk assessment, and the model is subsequently refined or revised as more information and understanding is obtained through the risk assessment process.

Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the likelihood and the consequences of an event must be taken into account when assessing risk.

The risk assessment process needs to take into account the degree of confidence required in decisions. Identification of uncertainties is an essential step in risk assessment.

The likelihood of an event is classified on a four-point system using the following terms and definitions from CIRIA C552:

- High likelihood: There is a pollution linkage and an event appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution;
- Likely: There is a pollution linkage and all the elements are present and in the right place, which means it is probable that an event will occur. Circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term;
- Low likelihood: There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain even over a longer period such event would take place, and is less likely in the short term;
- **Unlikely**: There is a pollution linkage but circumstances are such that it is improbable the event would occur even in the long term.

The severity is also classified using a system based on CIRIA C552. The terms and definitions are:

- Severe: Short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. A short-term risk to a particular ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000); Examples High concentrations of contaminant on surface of recreation area, major spillage of contaminants from site into controlled waters, explosion causing building to collapse;
- Medium: Chronic damage to human health ('significant harm' as defined in DETR 2000). Pollution of sensitive water resources. A significant change in a particular ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000); Examples Concentrations of contaminants exceed the generic assessment criteria, leaching of contaminants from a site to a Principal or Secondary Aquifer death of

leaching of contaminants from a site to a Principal or Secondary Aquifer, death of species within a designated nature reserve;

 Mild: Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures, services or the environment;

Examples – *Pollution of non-classified groundwater or damage to buildings rendering it unsafe to occupy.*

 Minor: harm, not necessarily significant harm, which may result in financial loss or expenditure to resolve. Non-permanent health effects to human health (easily prevented by use of personal protective clothing etc). Easily repairable effects of damage to buildings, structures and services.

Examples – Presence of contaminants at such concentrations PPE is required during site work, loss of plants in landscaping scheme or discolouration of concrete.

Once the likelihood and severity have been determined, a risk category can be assigned using the table below.

		Consequences			
		Severe	Medium	Mild	Minor
	Highly likely	Very high	High	Moderate	Moderate/low
Probability	Likely	High	Moderate	Moderate/low	Low
	Low likelihood	Moderate	Moderate/low	Low	Very low
	Unlikely	Moderate/low	Low	Very Low	Very low

Definitions of the risk categories obtained from the above table are as follows together with an assessment of the further work that might be required:

- Very high: There is a high probability that severe harm could arise to a designated receptor from an identified hazard or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability. Urgent investigation and remediation are likely to be required;
- **High**: Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation is required and remedial works may be necessary in the short term and are likely over the longer term;
- **Moderate**: It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it would be more likely to be relatively mild. Investigation is normally required to clarify the risk and determine the liability. Some remedial works may be required in the longer term;
- **Low**: It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild;
- **Very Low**: There is a low possibility that harm could arise to a receptor. In the event of such harm being realised, it is not likely to be severe.

APPENDIX H Contaminated Land Legislative Background

Legislative Background

Environmental liabilities and risks have been evaluated in terms of a source -pathway - target relationship in accordance with the approach set out in:

- The 1995 Environment Act;
- The Contaminated Land (England) Regulations 2000;
- The DETR circular 02/2000 Environmental Protection Act 1990: Part IIA Contaminated Land.

Contaminated land is defined within the legislative framework as land which is in such condition by reason of substances in, on or under the land that:

- 1) Significant harm is being caused or there is a significant possibility of such harm being caused;
- 2) Significant pollution of controlled waters is being or is likely to be caused.

The potential for harm is based on the presence of three factors:

- Source substances that are potential contaminants or pollutants that may cause harm;
- **Pathway** a potential route by which contaminants can move from the source to the receptor;
- > Receptor a receptor that may be harmed, for example the water environment, humans and water.

Where a source, pathway and target are all present a pollutant linkage exists and there is potential for harm to be caused. The presence of a source does not automatically imply that a contamination problem exists, since contamination must be defined in terms of pollutant linkages and unacceptable risk of harm. The nature and importance of both pathways and receptors are site specific and will vary according to the intended end use of the site, its characteristics and its surroundings.

The key principle which supports the SPR approach is 'suitable for use' criteria. This requires remedial action only where contamination is considered to pose unacceptable actual or potential risks to health or the environment and, taking into account the proposed use of the site.

Relevant Guidance Documents

This report has been prepared in accordance with the list of guidance below however the list is not exhaustive:

- CLR11 Model Procedures;
- Contamination and Environmental Matters Their implications for Property Professionals (2nd Edition RICS Nov 2003);
- Brownfields Managing the development of previously developed land A client's guide, CIRIA 2002;
- DEFRA and Environment Agency publications CLR7 10, supported by the TOX guides and SGV guides, dated March 2002;
- DETR Circular 02/2000, Contaminated Land: Implementation of Part IIA of the Environmental Protection Act 1990;
- Environment Agency technical advice to third parties on Pollution of Controlled Waters for Part IIA of the EPA1990, May 2002;

Relevant Legislative Documents

The following is a non-exhaustive list of legislative framework documents that has been considered in the production of this report:

- The Environment Act (1995);
- The Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance (2012);
- The Environment Protection Act (1990);
- The Contaminated Land (England) Act (2000);
- Contaminated Land (England) Regulations (2012);
- The Water Resources Act (1991);
- The Pollution Prevention and Control (England and Wales) Regulations (2000);
- The Landfill Regulations (England and Wales) Regulations (2002);
- The Landfill (England and Wales) (Amendment) Regulations (2004);
- Health and Safety at Work Act;

APPENDIX I Waste Disposal Guidance

WASTE CLASSIFICATION FOR SOILS

Introduction

Waste producers have a duty of care classify the waste they are producing:

- before it is collected, disposed of or recovered.
- to identify the controls that apply to the movement of the waste.
- to complete waste documents and records.
- to identify suitably authorised waste management options.
- to prevent harm to people and the environment.

The most sustainable and economic method of dealing with waste soil is usually the retention and re-use on site. Where this is not possible there are three main options for the disposal of soils:

- 1. Disposal to a permitted waste recycling facility.
- 2. Re-use on another site (subject to the suitability).
- 3. Disposal to a landfill site.

The disposal to a permitted facility will be subject to the **specific conditions of the permits for each of individual facility** and will vary dependent on location and environmental sensitivity of the receiving site. Re-use on another site with also be subject to the acceptability criteria of that site.

The guidance below relates to disposal to landfill sites only.

Background for Landfill Disposal

In July 2005 the United Kingdom implemented the European Directive 1999/31/EC (The Landfill Directive), this introduced the current regime for waste and waste disposal to landfill. The Landfill Directive places controls on waste disposal. These controls include requirements to follow the waste acceptance procedures and criteria that have been agreed by the Council of the European Union and are laid out in Council Decision 2003/33/EC.

Before a waste can be accepted at a landfill site, the landfill **operator** must be satisfied that the waste meets his permit conditions, the waste acceptance procedures (WAP) and waste acceptance criteria (WAC). If disposal to landfill is the best management option for the waste soils, these procedures **must** be followed or the operator may refuse to accept the waste.

Key Points

- Not all waste can be landfilled
- Landfills are classified according to whether they can accept hazardous, non-hazardous or inert wastes.
- Wastes can only be accepted at a landfill if they meet the waste acceptance criteria (WAC) for that class of landfill.
- Most wastes must be treated before you can send them to landfill.
- There are formal processes for identifying and checking wastes that must be followed before wastes can be accepted at a landfill site.

Classification

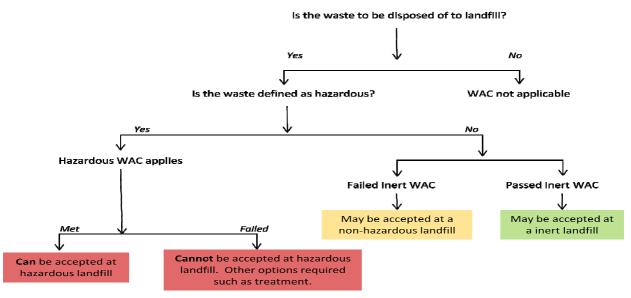
Wastes are listed in the European Waste Catalogue (EWC 2002) and grouped according to generic industry, process or waste types. Wastes within the EWC are either hazardous or non-hazardous. Some of these wastes are hazardous without further assessment (absolute entries) or are 'mirror' entries that require further assessment of their hazardous properties in order to determine whether they are hazardous waste.

Waste soil has mirror entries on the EWC and as such the first phase of the waste classification process is that of determining if the waste is hazardous or not ie the hazard assessment. The most common EWC waste codes related to soil are:

17 05	soil (including excavated soil from contaminated sites), stones and dredging spoil		
17 05 03*	soil and stones containing dangerous substances		
17 05 04	soil and stones other than those mentioned in 17 05 03		

Soils may contain certain contaminants (eg asbestos, diesel) which have prescribed concentration thresholds, that if breached will render the material hazardous waste. These are based on "risk phrases" which can include risks such as carcinogenicity, flammability or toxicity.

In the first instance the concentrations of plausible contaminants within the soil should be identified and wastes should be **classified based on their total concentrations**.


Waste Definitions

Inert	 Will not undergo any significant physical, chemical or biological transformations. Will not dissolve. Will not burn. Will not physically or chemically react. Will not biodegrade. Will not adversely affect other matter with which it comes into contact in a way likely to give rise to environmental pollution or harm to human health. Has insignificant total leachability and pollutant content. Produces a leachate with an ecotoxicity that is insignificant (if it produces leachate). 		
Non-Hazardous	Is not inert (see above) Is not hazardous (see below)		
Hazardous	Soil has hazardous properties as defined in WM3 (.Guidance on the classification and assessment of waste (1st edition 2015)- Technical Guidance)		
hazardous waste	-reactive Hazardous waste, the leaching behaviour of which will not change adversely in the long-term, under [#] landfill design conditions or foreseeable accidents: in the waste alone (for example, by biodegradation); under the impact of long-term ambient conditions (for example, water, air, temperature or mechanical constraints); by the impact of other wastes (including waste products such as leachate and gas). azardous waste that has been stabilised and thus has a low leaching potential to be deposited in cells with a standard of containment		

This option allows hazardous waste that has been stabilised and thus has a low leaching potential to be deposited in cells with a standard of containment consistent with non-hazardous wastes.

WAC Testing

The purpose of WAC analysis is to confirm that the waste complies with the relevant WAC for the receiving landfill. The WAC limits **cannot be used to make an assessment of whether a waste is hazardous**. WAC testing does however define if a non-hazardous waste is suitable for an inert landfill.

Hydrocarbons in Soils

WM3 uses the term Oil or Waste Oil to cover hydrocarbons products such as fuel oil, petrol or diesel. These are defined by WM3 as hazardous under an absolute entry in the List of Wastes. However hydrocarbons in soils are a mixture rather than a pure product and absolute entries are not relevant.

Known Oils

The simplest scenario is where the identity of the contaminating oil is known, or can be identified. If the oil is known the manufacturer's or supplier's REACH compliant safety data sheet for the specific oil can be obtained and the hazard statement codes on that Safety Data Sheet can be used for the hazardous waste assessment.

Where the identity of the oil can only be identified down to a petroleum group level (i.e. the contaminating oil is known to be diesel, but the specific type/brand is unknown), then the classification of that petroleum group should be used in the assessment. The marker compounds associated with that petroleum group may be used to confirm carcinogenicity.

Oils may contain a range of hydrocarbons, so the presence of for instance Diesel Range Organics (DRO) does not enable the assessor to conclude that diesel is present. These hydrocarbons may have arisen from other oils, the laboratory needs to provide an interpretation that the chromatograph is consistent with diesel or weathered diesel as a whole.

The concentration of known oils should be determined using a method that as a minimum spans the range in which the carbon numbers for that known oil fall.

Unknown Oils

Where hydrocarbons are contaminating soils it is likely that the oil will be unknown or cannot be determined.

WM3 states that:

For contaminated land specific consideration must be given to the following before proceeding;

- The presence of other organic contaminants, for example solvents or coal tar that could be detected as hydrocarbons. Coal Tar is not an oil and is considered separately in example 2. Where the site history or investigation indicates the presence of hydrocarbons from oil and other sources (e.g. coal tar), and the origin of the hydrocarbons cannot reliably be assigned to either, then a worst case approach of considering the hydrocarbons both as, waste oil (in accordance with this example) and from other sources, for example coal tar should be taken.
- The presence of diesel, or weathered diesel, should be specifically considered by the laboratory and where this is confirmed by the hydrocarbon profile the oil should be assessed as a known or identified oil (diesel).

The use of **marker compounds** is optional; however it is recommended that where possible the marker compounds should be used.

WM3 states:

If the identity of the oil is unknown, and the petroleum group cannot be established, then the oil contaminating the waste can be classified as non-carcinogenic/mutagenic due to the presence of oil if all three of the following criteria are met:

- The waste contains benzo[a]pyrene (BaP) at a concentration of less than 0.01% (1/10,000th) of the TPH concentration (This is the carcinogenic limit specified in table 3.1 of the CLP for BaP)
- This has been determined by an appropriate and representative sampling approach in accordance with the principles set out in Appendix D, and
- The analysis clearly demonstrates, for example by carbon bands or chromatograph, and the laboratory has reasonably concluded that the hydrocarbons present have not arisen from petrol or diesel.

For example:

TPH Concentration (mg/kg)	Petrol or Diesel	BaP (mg/kg)	Classification
10,000	No	0.9	Non- Hazardous
1,000	No	Not available	Hazardous
1,000	Yes	Not relevant	Hazardous

References

- 1. Environmental Permitting (England and Wales) Regulations 2010 (as amended) (EP Regulations), the Landfill Directive (1999/31/EC) and the Council Decision (2003/33/EC).
- 2. Environment Agency Environmental Permitting Regulations: "Inert Waste Guidance- Standards and Measures for the Deposit of Inert Waste on Land" 2009.
- 3. Environment Agency "Waste acceptance at landfills Guidance on waste acceptance procedures and criteria" Nov 2010.
- 4. Environment Agency "Guidance on the classification and assessment of waste (Technical Guidance WM3)" 1st edition May 2015.
- 5. Classification, Labelling and Packaging of Substances Regulation (EC 1272/2008) (CLP).

APPENDIX J CL:AIRE CoP

RE-USE OF WASTE - GUIDANCE NOTE

Definition of Waste:

The Environment Agency considers waste to be "...any material that is discarded, or intended to be discarded..." This includes any soil from trenches, footing, site strip etc. It is no longer required in its original location, therefore it is considered to be waste.

Re-use of Waste

Previously large scale earthworks and remedial schemes relied on waste management exemptions to allow the re-use of waste. However in 2010 the Environment Agency in England and Wales removed many of the waste management licence exemptions and severely restricted the quantity of materials available for other exemptions.

For purposes of earthworks and remediation, the previous exemptions available have been replaced by CL:AIRE Code of Practice (CoP), also commonly referred to as a "Materials Management Plan".

CL:AIRE: Code of Practice

Where materials are excavated for construction purposes, wherever possible these should be retained on site for engineering purposes if they are suitable for use. The developer/contractor is advised to complete all works under the CL:AIRE "Development Industry Code of Practice for the Definition of Waste" (CL:AIRE COP).

Potential scenarios where soils may be able to be re-used:

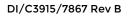
- Material capable of being used in another place on the same site without treatment;
- Material capable of being used in another place on the same site following ex-situ treatment on site;
- Material capable of being used in another development site without treatment (Direct Transfer);
- Material capable of being used in another development site following ex-situ treatment on another site eg Hub site;

The Code of Practice requires 4 No. Factors to be addressed:

- 1. Protection of human health and protection of the environment.
- 2. Suitability of use, without further treatment.
- 3. Certainty of use.
- 4. Quantity of material.

In order to satisfy these requirements the following are required:

- i) Consultation/approval with Local Authority & Environment Agency to confirm they have no objections to the proposed reuse of waste soils, or the risk assessments for the site.
- ii) Risk Assessments to demonstrate that the site does not present an Environmental Hazard.
- iii) Remediation Strategy for contaminated sites (or Design Statement for non-contaminated sites).
- iv) Materials Management Plan (MMP) which details material generated stockpiles and the end use.
- v) Volume calculations.
- vi) Planning permission for the development.
- vii) Contractual details to be clear, regarding who steps in is a contractor goes into administration/liquidation.


The use of the CoP is effectively industry regulated, there is a requirement to appoint an independent Qualified Person (QP) who checks all the requirements have been met and registers the documentation with the Environment Agency. This person must not have had any involvement with the preparing of the risk assessments or remedial strategy on the site.

Soils which require treatment on site (eg bioremediation, stabilisation) will require an Environmental Permit for treatment, together with justification and validation to prove, once treated, this material is suitable for use.

Site management procedures need to be in place to ensure that material is tracked through from excavation stockpiling, treatment and remediation processes. Should the process of material tracking be considered non-robust, or not adhered to, this may fail the test whether excavated materials may be considered non-waste.

APPENDIX K Limitations

Standard Limitations

This desk study report was conducted and has been prepared for the sole internal use and reliance of the Client, Stewart Milne Homes. This report shall not be relied upon or transferred to any other parties without the express written authorisation of BSL. If an unauthorised third party comes into possession of this report they rely on it at their risk and the authors owe them no duty of care or skill.

The findings and opinions conveyed via the desk study are based on information obtained from a variety of sources as detailed within this report, which BSL believes are reliable. Nevertheless, BSL cannot and does not guarantee the authenticity or reliability of the information it has relied upon.

Any recommendations made in this report should be confirmed with the Regulatory bodies and Planning Authority prior to implementation to ensure compliance.

No existing manhole covers were lifted or drainage runs inspected during the course of this ground investigation.

The site plans enclosed in this report should not be scaled off.